• Title/Summary/Keyword: DHB

Search Result 31, Processing Time 0.021 seconds

Enhanced Detection of Glycans by MALDI-TOF Mass Spectrometry Using a Binary Matrix of 2,5-Dihydroxybenzoic Acid and 2,6-Dihydroxybenzoic Acid

  • Kim, Yunjin;Kim, Taehee;Lee, Jihyeon;Im, Haeju;Kim, Jeongkwon
    • Mass Spectrometry Letters
    • /
    • v.4 no.2
    • /
    • pp.38-40
    • /
    • 2013
  • Glycans released from ovalbumin by PNGase F were analyzed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry using three different dihydroxybenzoic acid (DHB) matrix systems: 2,5-DHB, 2,6-DHB, and a 2,5-DHB/2,6-DHB binary matrix. Relative to the results obtained with the single-component matrices (2,5-DHB or 2,6-DHB), the 2,5-DHB/2,6-DHB binary matrix boasted lower background noise and higher sensitivity. A total of 16 glycan peaks were observed using the 2,5-DHB/2,6-DHB binary matrix, while only 10 and 9 glycan peaks were observed using the 2,5-DHB and 2,6-DHB matrices, respectively.

Characterization of an Unconventional MALDI-MS Peak from DHB/pyridine Ionic Liquid Matrices

  • Hong, Jangmi;Kim, Jeongkwon
    • Mass Spectrometry Letters
    • /
    • v.11 no.1
    • /
    • pp.6-9
    • /
    • 2020
  • Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) analysis of ionic liquid matrices (ILMs) prepared using pyridine and dihydroxybenzoic acid (DHB), such as 2,3-DHB and 2,5-DHB, displayed an unconventional peak at m/z 232.0, which was regarded as [DHB+pyridine-H]+. The peak at m/z 232.0 was not observed from other ILMs prepared using other DHB isomers, such as 2,4-DHB, 2,6-DHB, 3,4-DHB, and 3,5-DHB. Two requirements to observe the peak at m/z 232.0 in a DHB/pyridine ILM are suggested. First, carboxyl and hydroxyl groups must be located ortho to each other. Second, the secondary hydroxyl group must be located at a carbon with a high electron density. Based on these two requirements, a potential mechanism for the generation of the peak at m/z 232.0 is suggested.

Effect of Dihydroxybenzoic Acid Isomers on the Analysis of Polyethylene Glycols in MALDI-MS

  • Lee, Ae-Ra;Yang, Hyo-Jik;Kim, Yang-Sun;Kim, Jeong-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1127-1130
    • /
    • 2009
  • The effects of different dihydroxybenzoic acid (DHB) isomers, when used as matrix materials in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), were investigated in analyses of polyethylene glycol (PEG) polymers. PEG polymers ranging from 400 to 8,000 Da were prepared in different DHB isomer matrices using solvent-based and solvent-free methods. PEG samples were detected only in matrices of 2,3-DHB, 2,5-DHB, and 2,6-DHB while the most intense peaks were observed using 2,6-DHB in both solvent-free and solvent-based preparations.

Poly-3,4-dihydroxybenzaldehyde Modified with 3,4-dihydroxybenzoic acid for Improvement of Electrochemical Activities

  • Cha Seong-Keuck
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.4
    • /
    • pp.167-172
    • /
    • 2004
  • 3,4-dihydroxybenzaldehyde(3,4-DHB) was oxidatively el electropolymerized on glassy carbon (GC) electrodes to prepare CC/p-3,4-DHB type electrodes, which were subsequently modified with 3,4-dihydroxybenzoic acid(3,4-DHBA) using 0.05M HCI as a catalyst. The esterification reactions were performed between -OH sites on the polymeric film surface of the p-3,4-DHB and the -COOH sites within the 3,4-DHBA molecules in solution. These reactions had a rate constant value of $1.1\times10^{-1}\;s^{-1}$ for the esterification step as obtained from the first-order rate constant in the solution. The electrochemical responses of the GC/p-3,4-DHB-3,4-DHBA electrodes exert an influence upon the buffer solution, its pH and applied potential ranges. The redox process of the electrode was more easily controlled by charge transfer kinetics than that of the CC/p-3,4-DHB. The modified electrodes had redox active sites that were 10 times more active than those present before modification. The electrical admittance of the modified electrodes was also three times higher than that of the unmodified electrodes. After being annealed in ethanol for 20 hrs the electrodes brought about a 3.3 times greater change of water molecules in the redox reaction. The modified electrodes are stable in the potential range of 0.4 to 0.55V.

Production of siderophore from L-glutamic acid as both carbon and nitrogen sole sources in Acinetobacter sp. B-W (글루탐산을 유일한 탄소원과 질소원으로 이용하는 Acinetobacter sp. B-W의 시드로포어 생산)

  • Kim, Kyoung-Ja;Jang, Ju-Ho;Yang, Yong-Joon
    • Korean Journal of Microbiology
    • /
    • v.53 no.2
    • /
    • pp.97-102
    • /
    • 2017
  • Catechol type siderophore different from 2, 3-dihydroxybenzoic acid (DHB) was produced from Acinetobacter sp. B-W grown in medium containing L-glutamic acid as both carbon and nitrogen sole sources at $28^{\circ}C$. Optimal concentration of glutamic acid for siderophore production was 3% and production of siderophore was decreased above 3% glutamic acid. In previous report, siderophore, 2, 3-DHB was produced from strain B-W grown in medium containing glucose as carbon source and glutamic acid as nitrogen source. Rf value of siderophore produced from strain B-W grown in medium glutamic acid as both carbon and nitrogen sole sources at $28^{\circ}C$ was 0.32, while 2, 3-DHB was 0.84 in butanol-acetic acid-water (12:3:5) as developing solvent. Antioxidative activity of 2, 3-DHB was not detected in that siderophore produced from glutamic acid. Catechol nature of siderophore was detected by Arnow test. Although in iron-limited media optimal cell growth was identified at $36^{\circ}C$, significant quantities of siderophore were produced only at $28^{\circ}C$. Biosynthesis of siderophore was strongly inhibited by growth at $36^{\circ}C$. Production of siderophore was completely inhibited by $10{\mu}M\;FeCl_3$.

Effect of plasmid curing on the 2, 3-dihydroxybenzoic acid production and antibiotic resistance of Acinetobacter sp. B-W (Acinetobacter sp. B-W의 2, 3-dihydroxybenzoic acid 생산과 항생제 저항성에 미치는 플라스미드 제거 효과)

  • Kim, Kyoung-Ja;Kim, Jin-Woo;Yang, Yong-Joon
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.254-259
    • /
    • 2016
  • Acinetobacter sp. B-W producing siderophore, 2, 3-dihydroxybenzoic acid (DHB) was analyzed for plasmid content. Strain B-W harbored plasmid of 20 kb in size. Growth at $43^{\circ}C$ was effective in producing mutant cured of plasmid of strain B-W. This mutant lost the ability to produce 2, 3-DHB. Formation of siderophore halos on the chrome azurol S (CAS) agar medium was not detected by cured strain B-W. pHs of supernatants of wild type strain B-W and cured mutant grown in glucose and $MnSO_4$ containing medium at $28^{\circ}C$ for 3 days were 4.5 and 8.5, respectively. Antibiotic resistance against ampicillin, actinomycin D, bacitracin, lincomycin, and vancomycin was lost in cured mutant. Plasmid curing of strain B-W resulted in drastic reduction of minimal inhibitory concentration (MIC) of several antibiotics. E. coli $DH5{\alpha}$ was transformed with plasmid isolated from strain B-W. The transformant E. coli $DH5{\alpha}$ harbored a plasmid of the same molecular size as that of the donor plasmid. Transformant E. coli $DH5{\alpha}$ produced 2, 3-DHB and contained antibiotic resistant ability. Thus a single plasmid of 20 kb seemed to be involved in 2, 3-DHB production. Genes encoding resistance to antibiotics were also supposed to be located on this plasmid.

Detection of Small Neutral Carbohydrates Using Various Supporting Materials in Laser Desorption/Ionization Mass Spectrometry

  • Yang, Hyo-Jik;Lee, Ae-Ra;Lee, Myung-Ki;Kim, Woong;Kim, Jeong-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.35-40
    • /
    • 2010
  • A comprehensive comparative investigation of small carbohydrates in laser desorption ionization was performed on supporting materials composed of sodiated 2,5-dihydroxybenzoic acid (DHB), carbon nanotubes, an ionic liquid matrix of DHB-pyridine, a binary matrix of DHB-aminopyrazine, zinc oxide nanoparticles, and gold nanoparticles. The abundance of $[M+Na]^+$ ions, where M is glucose or sucrose, was compared for each supporting material. The highest sensitivity for both glucose and sucrose, with a detection limit of 3 pmol, was observed with carbon nanotubes. Both carbon nanotubes and the ionic liquid matrix exhibited the highest reproducibility.

Power Decoupling of Single-phase DC/AC inverter using Dual Half Bridge Converter (듀얼 하프브리지 컨버터를 사용하는 파워 디커플링 DC/AC 인버터)

  • Irfan, Mohammad Sameer;Ahmed, Ashraf;Park, Joung-hu
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.421-422
    • /
    • 2015
  • Nowadays, bidirectional DC-DC converters are becoming more into picture for different applications especially electric vehicles. There are many bidirectional DC-DC converters topologies; however, voltage-fed Dual Half-Bridge (DHB) topology has less number of switches as compared to other isolated bidirectional DC-DC converters. Furthermore, voltage fed DHB has galvanic isolation, high power density, reduced size, high efficiency and hence cost effective. Electrolytic capacitors always have problem regarding size and reliability in DC-AC single phase inverters. Therefore, voltage-fed DHB converter is proposed for the purpose of power decoupling to replace electrolytic capacitor by film capacitors. A new control strategy has been developed for 120Hz ripple rejection, and it was verified by simulation.

  • PDF

Spectroscopic Studies on U(VI) Complex with 2,6-Dihydroxybenzoic acid as a Model Ligand of Humic Acid (분광학을 이용한 흄산의 모델 리간드인 2,6-Dihydroxybenzoic acid와 우라늄(VI)의 착물형성 반응에 관한 연구)

  • Cha, Wan-Sik;Cho, Hye-Ryun;Jung, Euo-Chang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.4
    • /
    • pp.207-217
    • /
    • 2011
  • In this study the complex formation reactions between uranium(VI) and 2,6-dihydroxybenzoate (DHB) as a model ligand of humic acid were investigated by using UV-Vis spectrophotometry and time-resolved laser-induced fluorescence spectroscopy (TRLFS). The analysis of the spectrophotometric data, i.e., absorbance changes at the characteristic charge-transfer bands of the U(VI)-DHB complex, indicates that both 1:1 and 1:2 (U(VI):DHB) complexes occur as a result of dual equilibria and their distribution varies in a pH-dependent manner. The stepwise stability constants determined (log $K_1$ and log $K_2$) are $12.4{\pm}0.1$ and $11.4{\pm}0.1$. Further, the TRLFS study shows that DHB plays a role as a fluorescence quencher of U(VI) species. The presence of both a dynamic and static quenching process was identified for all U(VI) species examined, i.e., ${UO_2}^{2+}$, $(UO_2)_2{(OH)_2}^{2+}$, and $(UO_2)_3{(OH)_5}^+$. The fluorescence intensity and lifetimes of each species were measured from the time-resolved spectra at various ligand concentrations, and then analyzed based on Stern-Volmer equations. The static quenching constants (log $K_s$) obtained are $4.2{\pm}0.1$, $4.3{\pm}0.1$, and $4.34{\pm}0.08$ for ${UO_2}^{2+}$, $(UO_2)_2{(OH)_2}^{2+}$, and $(UO_2)_3{(OH)_5}^+$, respectively. The results of Stern-Volmer analysis suggest that both mono- and bi-dentate U(VI)-DHB complexes serve as groundstate complexes inducing static quenching.