• Title/Summary/Keyword: DG(Distributed Generation)

Search Result 162, Processing Time 0.044 seconds

Analysis of the Operating Point and Fault Current Contribution of a PEMFC as Distributed Generation (DG)

  • Moon, Dae-Seong;Kang, Gi-Hyeok;Chung, Il-Yop;Won, Dong-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.382-388
    • /
    • 2009
  • Recently, hydrogen energy has been anticipated to change the paradigm of conventional power systems because it can expand sustainable energy utilization and conceptually provide remarkable flexibility to power system operation. Since hydrogen energy can be converted to electric energy through fuel cells, fuel cells are expected to play an important role in the future hydrogen economy. In this paper, a Proton Exchange Membrane Fuel Cell (PEMFC) is modeled as an equivalent circuit and its steady-state characteristics investigated using the model. PEMFCs can be connected to power systems through power conditioning systems, which consist of power electronic circuits, and which are operated as distributed generators. This paper analyzes the effects of the characteristics of the PEMFC internal voltages and investigated the dynamic responses of the PEMFC under fault conditions. The results show that the fault current contribution of the PEMFC is different from those of conventional generators and is closely related to its operating point.

A SRF Power Flow Control Method for Grid-Connected Single-Phase Inverter Systems (단상 계통연계 인버터의 SRF 전력제어 방법)

  • Park, Han-Eol;Kim, Eun-Seok;Song, Joong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.129-135
    • /
    • 2010
  • It is well known that distributed generation(DG) system using renewable energy is an alternative to solve the problems which result from the exhaustion of fossil fuel and the environmental pollution. A PWM inverter is required for a power flow control in the DG systems. This paper proposes a SRF power flow control method considering grid impedance in grid-connected single-phase inverter systems. The proposed SRF power flow control method can provide a voltage-reference for the single-phase inverter even without any grid impedance estimation so that the single-phase inverter system could operate in stand-alone mode and grid-connected mode based on the known nominal value of grid impedance. Also independent controls of active and reactive power are achieved by the proposed control method. The effectiveness and the validity of the proposed control method are demonstrated through simulations. The simulation results show that the proposed control method can control properly power flow in grid-connected single-phase inverter systems.

Large-scale Virtual Power Plant Management Method Considering Variable and Sensitive Loads (가변 및 민감성 부하를 고려한 대단위 가상 발전소 운영 방법)

  • Park, Yong Kuk;Lee, Min Goo;Jung, Kyung Kwon;Lee, Yong-Gu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.225-234
    • /
    • 2015
  • Nowadays a Virtual Power Plant (VPP) represents an aggregation of distributed energy resource such as Distributed Generation (DG), Combined Heat and Power generation (CHP), Energy Storage Systems (ESS) and load in order to operate as a single power plant by using Information and Communication Technologies, ICT. The VPP has been developed and verified based on a single virtual plant platform which is connected with a number of various distributed energy resources. As the VPP's distributed energy resources increase, so does the number of data from distributed energy. Moreover, it is obviously inefficient in the aspects of technique and cost that a virtual plant platform operates in a centralized manner over widespread region. In this paper the concept of the large-scale VPP which can reduce a error probability of system's load and increase the robustness of data exchange among distributed energy resources will be proposed. In addition, it can directly control and supervise energy resource by making small size's virtual platform which can make a optimal resource scheduling to consider of variable and sensitive load in the large-scale VPP. It makes certain the result is verified by simulation.

Optimal capacity and allocation of distributed generation by minimum operation cost of distribution system (배전계통 운영비용의 최소화에 의한 분산전원의 최적용량과 위치결정)

  • Park, Jung-Hoon;Bae, In-Su;Kim, Jin-O;Shim, Hun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.360-362
    • /
    • 2003
  • In operation of distribution system, DGs(Distributed Generations) are installed as an alternative of extension and establishment of substations, transmission and distribution lines according to increasing power demand. Optimal capacity and allocation of DGs improve power quality and reliability. This paper proposes a method for determining the optimal number, size and allocation of DGs needed to minimize operation cost of distribution system. Capacity of DGs for economic operation of distribution system can be estimated by the load growth and line capacity during operation planning duration. DG allocations are determined to minimize total cost with failure rate and annual reliability cost of each load point using GA(Genetic Algorithm).

  • PDF

A Photovoltaic Device Model for Grid-connected PV System Simulation (계통연계형 태양광발전시스템의 태양광전지모델 시뮬레이션)

  • Campbell, Ryan;Kim, Hak-Man;Lee, Jong-Su;Shin, Myong-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.18-19
    • /
    • 2006
  • The recent interest in distributed generation (DG) due to the opening of the electricity market and the need for alternatives to conventional fossil fuel-based electricity generation has created renewed interest in grid-connected photovoltaic(PV) systems. Many studies are being performed at the power system level to examine the impacts of grid-connected PV systems and several models for PV arrays have been proposed in the literature. However, the complexity of these models and difficulties of implementing them in various software programs can be deterrents to their use. This paper proposes a robust and flexible PV device model suitable for dynamic and transient studies where the PV array's non-linear DC characteristics are important. The model's implementation in software is straightforward and it can even be constructed using standard software library components, as demonstrated using PSCAD/EMTDC.

  • PDF

Efficiency Analysis of DC application on RES concentrated distribution system and utilization plan for ESS (신재생에너지 밀집 연계 배전망의 DC화에 따른 효율성 분석 및 ESS 활용방안 검토)

  • Ko, Bokyung;Song, Sungyoon;Shin, ByoungYoon;Jang, Gilsoo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.255-256
    • /
    • 2015
  • The increasing penetration of renewable energy based distributed generation(DG) sources in low-voltage grid feeders has been receiving increased attention. High penetration of renewable energy generation in a distribution system can cause power quality and efficiency problem. In this paper, the operating plan for ESS and the efficiency analysis on RES(Renewable energy source) concentrated distribution system.

  • PDF

Protection Coordination Analysis for Distribution Systems Integrated with Distributed Generation (분산전원이 도입된 배전계통의 보호협조 해석방법)

  • Kim, Jae-Eon;Kim, Eui-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2279-2284
    • /
    • 2011
  • In most of radial distribution systems, the overcurrent protection coordination is adopted for the protection of apparatus and the improvement of electrical power system reliability. The protection coordination structure in distribution substation is composed of several circuit breakers(CB) with distribution lines originating from one substation bus under one transformer, which trip for their fault current. But sufficient analysis is necessary for the capacity of CB's in distribution systems with several distribution generations(DG). In this paper, a protection coordination method not to exceed the traditional capacity of CB's was proposed and certified through simulation by the PSCAD-EMTDC S/W.

Power Quality Improvement for Grid Connected Inverters under Distorted and Unbalanced Grids

  • Kim, Hyun-Sou;Kim, Jung-Su;Kim, Kyeong-Hwa
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1578-1586
    • /
    • 2016
  • A power quality improvement scheme for grid connected inverters, even in the presence of the disturbances in grid voltages due to harmonic distortions and three-phase imbalance, is presented for distributed generation (DG) power systems. The control objective is to force the inverter currents to follow their references with robustness even under external disturbances in grid voltages. The proposed scheme is realized by a disturbance observer (DOB) based current control scheme. Since the uncertainty in a system can be effectively canceled out using an estimated disturbance by the DOB, the resultant system behaves like a closed-loop system consisting of a disturbance-free nominal model. For experimental verification, a 2 kVA laboratory prototype of a grid connected inverter has been built using a digital signal processor (DSP) TMS320F28335. Through comparative simulations and experimental results under grid disturbances such as harmonic distortion and imbalance, the effectiveness of the proposed DOB based current control scheme is demonstrated.

Active Distribution System Planning Considering Battery Swapping Station for Low-carbon Objective using Immune Binary Firefly Algorithm

  • Shi, Ji-Ying;Li, Ya-Jing;Xue, Fei;Ling, Le-Tao;Liu, Wen-An;Yuan, Da-Ling;Yang, Ting
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.580-590
    • /
    • 2018
  • Active distribution system (ADS) considering distributed generation (DG) and electric vehicle (EV) is an effective way to cut carbon emission and improve system benefits. ADS is an evolving, complex and uncertain system, thus comprehensive model and effective optimization algorithms are needed. Battery swapping station (BSS) for EV service is an essential type of flexible load (FL). This paper establishes ADS planning model considering BSS firstly for the minimization of total cost including feeder investment, operation and maintenance, net loss and carbon tax. Meanwhile, immune binary firefly algorithm (IBFA) is proposed to optimize ADS planning. Firefly algorithm (FA) is a novel intelligent algorithm with simple structure and good convergence. By involving biological immune system into FA, IBFA adjusts antibody population scale to increase diversity and global search capability. To validate proposed algorithm, IBFA is compared with particle swarm optimization (PSO) algorithm on IEEE 39-bus system. The results prove that IBFA performs better than PSO in global search and convergence in ADS planning.

An Open Circuit Fault Diagnostic Technique in IGBTs for AC to DC Converters Applied in Microgrid Applications

  • Khomfoi, Surin;Sae-Kok, Warachart;Ngamroo, Issarachai
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.801-810
    • /
    • 2011
  • An open circuit fault diagnostic method in IGBTs for the ac to dc converters used in microgrid applications is developed in this paper. An ac to dc converter is a key technology for microgrids in order to interface both distributed generation (DG) and renewable energy resources (RES). Also, highly reliable ac to dc converters are necessary to keep converters in continuous operation as long as possible during power switch fault conditions. Therefore, the proposed fault diagnostic method is developed to reduce the fault detection time and to avoid any other fault alarms because continuous operation is desired. The proposed diagnostic method is a combination of the absolute normalized dc current technique and the false alarm suppression algorithm to overcome the long fault detection time and fault alarm problems. The simulation and experimental results show that the developed fault diagnostic method can perform fault detection within about one cycle. The results illustrate that the reliability of an ac to dc converter interfaced with a microgrid can be improved by using the proposed fault diagnostic method.