• Title/Summary/Keyword: DFT study

Search Result 379, Processing Time 0.032 seconds

Ab initio study of MoS2 nanostructures

  • Cha, Janghwan
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.214-216
    • /
    • 2013
  • The atomic and electronic properties of molybdenum disurfide ($MoS_2$) nanostructures are investigated through density functional theory (DFT) calculations. We find that the band gap is indirect (about 1.79 eV) and direct (about 1.84 eV) in GGA for 2-dimensional $MoS_2$ in our calculations. On the other hand, 1-dimensional armchair nanoribbons have semiconductor properties (band gap is about 0.11~0.28 eV), while 1-dimensional zigzag nanoribbons are metallic.

  • PDF

Time-series CCD photometry of the open cluster M44

  • Lee, Ho
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.49.4-49.4
    • /
    • 2021
  • We Present a B and V band time-series CCD photometry of the Delta scuti stars, BV Cnc, BN Cnc, BU Cnc, BS Cnc, in the open cluster M44. The observation was carried out for 36 nights between February, 2020 and February 2021 with a 0.6m telescope equipped 2K CCD camera at Gyeonggi Science High School for the Gifted(GSHS). To detect pulsational frequencies, we wuse Discret Fourier Transformation(DFT) method. We have detected resonable pulsational frequencis compare to previous study.

  • PDF

A Study on Circular Filtering in Orthogonal Transform Domain

  • Song, Bong-Seop;Lee, Sang-Uk
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.2
    • /
    • pp.125-133
    • /
    • 1996
  • In this paper, we dicuss on the properties related to the circular filtering in orthogonal transform domain. The efficient filtering schemes in six orthogonal transform domains are presented by generalizing the convolution-multiplication property of the DFT. In brief, the circular filtering can be accomplished by multiplying the transform domain filtering matrix W, which is shown to be very sparse, yielding the computational gains compared with the time domain processing. As an application, decimation and interpolation techniques in orthogonal transform domains are also investigated.

  • PDF

A STUDY OF ORAL STATUS OF MENTAL RETARDED CHILDREN (정신(精神) 박약아(薄弱兒)의 구강(口腔) 상태(狀態)에 관(關)한 고찰(考察))

  • Jhee, In-Ae
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.8 no.1
    • /
    • pp.77-88
    • /
    • 1981
  • The purpose of this study was to make a comprehensive study & evaluation of the oral status of mental retarded children. The auther examined intraorally 486 (male; 311, female;175) mental retarded children. The result was as follows; (General mental retarded children means the children who live in their parent's home, & orphan mental retarded children means the children who live in orphanage.) 1. The dft rate was 31.6% in general mental retarded children (G.m.r.c.) & 20.7% in orphan mental retarded children (O. m. r. c.). The dft index was 3.73 in G.m.r.c. & 2.15 in O.m.r.c. 2. The DMFT rate was 24.6% in female G.m.r.c., 16.7% in male G.m.r.c., 12.7% in female O.m.r.c., 8.4% in male O.m.r.c. The DMFT index was 4.94 in female G.m.r.c., 4.01 in male G.m.r.c., 1.40 in male O.m.r.c., 2.75 in female O.m.r.c. 3. The malocclusion prevalence was 57.3%. the class I malocclusion was 14.2% Class II malocclusion 19.3%, Class III malocclusion 23.5%. The children with Down's syndrome had 60.0% of class III malocclusion prevalence. 4. The dental calculus index was 1.97 in male O.m.r.c., 1.81 in female O.m.r.c., 1.30 in male G.m.r.e., 1.13 in female G.m.r.c. 5. The dental plaque index was 3.06 in female G.m.r.c., 3.00 in male Gm.r.e. 2.70 in male O.m.r,c., 2.32 in female O.m.r.c.

  • PDF

An In Silico Drug Repositioning Strategy to Identify Specific STAT-3 Inhibitors for Breast Cancer

  • Sruthy Sathish
    • Journal of Integrative Natural Science
    • /
    • v.16 no.4
    • /
    • pp.123-131
    • /
    • 2023
  • Breast cancer continues to pose a substantial worldwide health challenge, thereby requiring the development of innovative strategies to discover new therapeutic interventions. Signal Transducer and Activator of Transcription 3 (STAT-3) has been identified as a significant factor in the development of several types of cancer, including breast cancer. This is primarily attributed to its diverse functions in promoting tumour formation and conferring resistance to therapeutic interventions. This study presents an in silico drug repositioning approach that focuses on identifying specific inhibitors of STAT-3 for the purpose of treating breast cancer. We initially examined the structural and functional attributes of STAT-3, thereby elucidating its crucial involvement in cellular signalling cascades. A comprehensive virtual screening was performed on a diverse collection of drugs that have been approved by the FDA from zinc15 database. Various computational techniques, including molecular docking, cross docking, and cDFT analysis, were utilised in order to prioritise potential candidates. This prioritisation was based on their predicted binding energies and outer molecular orbital reactivity. The findings of our study have unveiled a Dihydroergotamine and Paritaprevir that have been approved by the FDA and exhibit considerable promise as selective inhibitors of STAT-3. In conclusion, the utilisation of our in silico drug repositioning approach presents a prompt and economically efficient method for the identification of potential compounds that warrant subsequent experimental validation as selective STAT-3 inhibitors in the context of breast cancer. The present study highlights the considerable potential of employing computational strategies to expedite the drug discovery process. Moreover, it provides valuable insights into novel avenues for targeted therapeutic interventions in the context of breast cancer treatment.

Computational Chemistry Study on Gas Hydrate Formation Using HFC & HCFC Refrigerants (R-134a, R-227ea, R-236fa, R-141b) (수소불화탄소 및 수소염화불화탄소 냉매(R-134a, R-227ea, R-236fa, R-141b)를 이용한 가스 하이드레이트 형성에 관한 계산화학적 해석)

  • Kim, Kyung Min;An, Hye Young;Lim, Jun-Heok;Lee, Jea-Keun;Won, Yong Sun
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.704-710
    • /
    • 2017
  • Although the desalination technique using gas hydrate formation is at a development stage compared to the commercially well-established reverse osmosis (RO), it still draws attention because of its simplicity and moderate operational conditions especially when using refrigerants for guest gases. In this study, DFT (density functional theory)-based molecular modeling was employed to explain the energetics of the gas hydrate formation using HFC (hydrofluorocarbon) and HCFC (hydrochlorofluorocarbon) refrigerants. For guest gases, R-134a, R-227ea, R-236fa, and R-141b were selected and three cavity structures ($5^{12}$, $5^{12}6^2$, and $5^{12}6^4$) composed of water molecules were constructed. The geometries of guest gas, cavity, and cavity encapsulating guest gas were optimized by molecular modeling respectively and their located energies were then used for the calculation of binding energy between the guest gas and cavity. Finally, the comparison of binding energies was used to propose which refrigerant is more favorable for the gas hydrate formation energetically. In conclusion, R-236fa was the best choice in terms of thermodynamic spontaneity, less toxicity, and low solubility in water.

A Computational Mineralogy Study of the Crystal Structure and Stability of Aluminum Silicate (Al2SiO5) Minerals (알루미늄 규산염(Al2SiO5) 광물의 결정구조와 안정성에 대한 계산광물학 연구)

  • Kim, Juhyeok;Son, Sangbo;Kwon, Kideok D.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.13-22
    • /
    • 2018
  • Aluminum silicates ($Al_2SiO_5$) undergo phase transitions among kyanite, andalusite, and sillimanite depending on temperature and pressure conditions. The minerals are often used as an important indicator of the degree of metamorphism for certain metamorphic rocks. In this study, we have applied classical molecular dynamics (MD) simulations and density functional theory (DFT) to the aluminum silicates. We examined the crystal structures as a function of applied pressure and the corresponding stabilities based on calculated enthalpies at each pressure. In terms of the lattice parameters, both methods showed that the volume decreases as the pressure increases as observed in the experiment. In particular, DFT results differed from experimental results by much less than 1%. As to the relative stability, however, both methods showed different levels of accuracy. In the MD simulations, a transition pressure at which the relative stability between two minerals reverse could not be determined because the enthalpies were insensitive to the applied pressure. On the other hand, in DFT calculations, the relative stability relation among the three minerals was consistent with experiment, although the transition pressure was strongly dependent on the choice of the electronic exchange-correlation functional.

DFT Study for the Thermodynamic Stability and Binding Energeticsof SnOn, SnO2n, SnO3n (n = 1~4) (SnOn, SnO2n, SnO3n (n = 1~4)의 열역학적 안정성과 결합에너지에 대한 DFT 이론 연구)

  • Kim, Si-Jo;Kim, Seung-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.5
    • /
    • pp.512-520
    • /
    • 2009
  • The theoretical calculations for $S_nO_n,\;S_nO_{2n},\;S_nO_{3n}\;(n\;=\;1{\sim}4)$ have been considered at the B3LYP level of theory with various basis sets. The optimized geometries, harmonic vibrational frequencies, and binding energies are evaluated to elucidate the thermodynamic stability and spectroscopic properties. The harmonic vibrational frequencies for the molecules considered in this study show all real numbers implying true minima. The binding energies due to increasing of $S_nO_n,\;S_nO_{2n},\;S_nO_{3n}$ monomers are calculated at the MP2/6-311G** level of theory. For $S_nO_n\;(n\;=\;1{\sim}4)$, the binding energy difference is about 20∼25 kcal/mol by adding SO monomer. For $SO_2\;and\;SO_3\;(n\;=\;1{\sim}4)$, the binding energy differences are relatively small by comparing to $S_nO_n$.

Theoretical Study on the Hydrogen-Bonding Effect of H2On-H2Om (n=1-4, m=1-4) Dimers (H2On-H2Om (n=1-4, m=1-4) 이중합체의 수소결합에 따른 구조적 특성 및 결합에너지에 관한 이론 연구)

  • Song, Hui-Seong;Seo, Hyun-Il;Shin, Chang-Ho;Kim, Seung-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.2
    • /
    • pp.117-124
    • /
    • 2015
  • The DFT and ab initio calculations have been performed to elucidate hydrogen interaction of hydrogen polyoxide dimers, $H_2O_n-H_2O_m$ (n=1-4, m=1-4). The optimized geometries, harmonic vibrational frequencies, and binding energies are predicted at various levels of theory. The harmonic vibrational frequencies of the molecules considered in this study show all real numbers implying true minima. The higher-order correlation effect were discussed to compare MP2 result with CCSD(T) single point energy. The binding energies were corrected for the zero-point vibrational energy (ZPVE) and basis set superposition errors (BSSE). The largest binding energy predicted at the CCSD(T)/cc-pVTZ level of theory is 8.18 kcal/mol for $H_2O_4-H_2O_3$ and the binding energy of water dimer is predicted to be 3.00 kcal/mol.

Density Functional Theory (DFT) Study of Gas-phase O.C Bond Dissociation Energy of Models for o-TEMPO-Bz-C(O)-Peptide: A Model Study for Free Radical Initiated Peptide Sequencing

  • Kwon, Gyemin;Kwon, Hyuksu;Lee, Jihye;Han, Sang Yun;Moon, Bongjin;Oh, Han Bin;Sung, Bong June
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.770-774
    • /
    • 2014
  • The bond dissociation energy (BDE) of the chemical bond between the carbon and oxygen atoms of a simple TEMPO-derivative is calculated by employing the density functional theory, the $2^{nd}$ order M${\phi}$ller-Plesset (MP2) perturbation theory, and complete basis set (CBS) methods. We find that BDE of the positive ion of the TEMPO-derivative is larger at least by 7 kcal/mol than that of the negative ion, which implies that the dissociation reaction rate of the positive ion should be slower than that of the negative ion. Such theoretical predictions are contrary to the results of our previous experiments (Anal. Chem. 2013, 85, 7044), in which the larger energy was required for negative o-TEMPO-Bz-C(O)-peptides to undergo the dissociation reactions than for the positive ones. By comparing our theoretical results to those of the experiments, we conclude that the dissociation reaction of o-TEMPO-Bz-C(O)-peptide should occur in a complicated fashion with a charge, either positive or negative, probably being located on the amino acid residues of the peptide.