• Title/Summary/Keyword: DFT(B3LYP)

Search Result 105, Processing Time 0.02 seconds

Magnetic Exchange Interactions in a 2D Grid-like Copper(II) Polymer with Bridging End-on Cyanato and Pyrazine Ligands: A DFT Study

  • Kang, Dae-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1704-1710
    • /
    • 2010
  • The structure of a 2D grid-like copper(II) complex [Cu$(NCO)_2$(pyz)](pyz=pyrazine) (1) consists of 1D chains of Cu-pyz units connected by double end-on (EO) cyanato bridges. Each Cu(II) ion has a distorted octahedral coordination, completed by the four EO cyanato and two pyrazine ligands. Magnetic interactions through EO cyanato and pyrazine bridges in 1 are discussed on the basis of DFT broken-symmetry calculations at the B3LYP level. For model dicopper(II) complexes I (bridged by cyanato) and II (bridged by pyrazine), electronic structure calculations reproduce very well the experimental couplings for the S = 1/2 ferromagnetic and antiferromagnetic exchange-coupled 2D system: the calculated exchange parameters J are +1.25 $cm^{-1}$ and -3.07 $cm^{-1}$ for I and II, respectively. The $\sigma$ orbital interactions between the Cu $x^2-y^2$ magnetic orbitals and the nitrogen lone-pair orbitals of pyrazine are analyzed from the viewpoint of through-bond interaction. The energy splitting of 0.106 eV between two SOMOs indicates that the superexchange interaction should be antiferromagnetic in II. On the other hand, there are no bridging orbitals that efficiently connect the two copper(II) magnetic orbitals in I because the HOMOs of the basal-apical NCO bridge do not play a role in the formation of overlap interaction pathway. The energy separation in the pair of SOMOs of I is calculated to be very small (0.054 eV). This result is consistent with the occurrence of weakly ferromagnetic properties in I.

Theoretical Study for Structures and Spectroscopic Properties of C60(CH2)nOH (n=0~2) and C60(OH)2 (C60(CH2)nOH (n=0~2)와 C60(OH)2의 분자구조 및 분광학적 성질에 관한 이론 연구)

  • Lee, Ju-Young;Kim, Seung-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.6
    • /
    • pp.905-911
    • /
    • 2011
  • The possible minimum structures of $C_{60}(CH_2)_nOH$ (n=0~2) and $C_{60}(OH)_2$have been optimized using density functional theory (DFT) with the 6-311G (d,f) basis set. The harmonic vibrational frequencies and IR intensities are also determined to confirm that all the optimized geometries are true minima. Also zero-point vibrational energies (ZPVE) have been considered to predict the binding energies. The predicted binding energy of $C_{60}CH_2OH$ is about 10 kcal/mol more stable than the binding energy of $C_{60}OH$.

Molecular Dynamics Simulation and Density Functional Theory Investigation for Thiacalix[4]biscrown and its Complexes with Alkali-Metal Cations

  • Hong, Joo-Yeon;Lee, Che-Wook;Ham, Si-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.453-456
    • /
    • 2010
  • The structural and energetic preferences of thiacalix[4]biscrown-5 with and without alkali metal ions ($Na^+$, $K^+$, $Rb^+$, and $Cs^+$) have been theoretically investigated for the first time using molecular dynamic (MD) simulations and density functional theory (MPWB1K/6-31G(d)//B3LYP/6-31G(d)) methods. The formation of the metal ion complex by the host is mainly driven by the electrostatic attraction between crown-5 oxygens and a cation together with the minor contribution of the cation-$\pi$ interaction between two facing phenyl rings around the cation. The computed binding energies and the atomic charge distribution analysis for the metal binding complexes indicate the selectivity toward a potassium ion. The theoretical results herein explain the experimentally observed extractability order by this host towards various alkali metal ions. The physical nature and the driving forces for cation recognition by this host are discussed in detail.

Synthesis of α-oximinoketones, Precursor of CO2 Reduction Macrocyclic Coenzyme F430 Model Complexes

  • Kim, Gilhoon;Won, Hoshik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.4
    • /
    • pp.139-144
    • /
    • 2017
  • Ni(II) containing coenzyme F430 catalyzes the reduction of $CO_2$ in methanogen. Macrocyclic Ni(II) complexes with N,O shiff bases have been received a great attention since metal ions play an important role in the catalysis of reduction. The reducing power of metal complexes are supposed to be dependent on oxidoreduction state of metal ion and structural properties of macrocyclic ring moiety that can enhance electrochemical properties in catalytic process. Six different ${\alpha}$-oximinoketone compounds, precursor of macrocyclic ligands used in $CO_2$ reduction coenzyme F430 model complexes, were synthesized with yields over 90% and characterized by NMR. The molecular geometries of ${\alpha}$-oximinoketone analogues were fully optimized at Beck's-three-parameter hybrid (B3LYP) method in density functional theory (DFT) method with $6-31+G^*$ basis set using the ab initio program. In order to understand molecular planarity and substitutional effects that may enhance reducing power of metal ion are studied by computing the structure-dependent $^{13}C$-NMR chemical shift and comparing with experimental results.

다중 금속 착화합물의 이론적 계산

  • Kim, Chang-Gyu;Son, Mun-Gi;Sin, Seok-Min
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.197-209
    • /
    • 2014
  • 환경 오염에 대한 우려의 목소리가 높아지면서 Green chemistry 분야가 각광을 받고 있다. 이 분야에서는 환경에 영향을 적게 미치기 위한 방법의 일환으로 촉매를 연구하며, 그 촉매는 착화합물인 경우가 많다. 그러나 착화합물 내에서 리간드와 금속 이온간의 결합은 예측하기 어렵다. 이는 전형금속보다는 전이금속에서 더욱 심하며, 그 중 한 예로 전이금속에서는 여러 개의 금속 이온이 서로 직접적으로 결합한 채 리간드와 결합하는 착화합물이 발견되기도 한다. 다중 금속 착화합물(Multimetal Complex)로 부르는 이러한 구조는 특유의 복잡함 때문에 잘 알려져 있지 않음에도 불구하고 착화합물의 물리적, 화학적 성질에 직접적으로 영향을 주기에 촉매나 센서, 특히 이를 이용하여 구조체를 만드는 MOF(Metal-Organic Framework) 분야에서는 꼭 알고 있어야 하는 사항이다. 이 연구에서는 GAMESS로 density functional theory (B3LYP functional)를 이용한 양자계산을 수행하여 그 중 가장 간단한 구조인 Dimetal Complex, 그 중에서도 MOF 내에서 많이 발견되는 수차 형태(Paddle wheel) 착화합물에 대해서 다루었다. Cu를 기준으로 그와 비슷한 주기나 족에 있는 Ru, Ag, Zn 등의 금속으로 만든 Paddle wheel 구조의 에너지를 비교하여 Cu가 다른 금속에 비해 이 구조를 안정하게 형성할 수 있는 이유를 알아보았다. 더 나아가 이 구조가 MOF의 형성과 성질에 어떠한 연관성이 있는지 분석함으로써 어떠한 조건이 MOF의 성질을 극대화시킬 수 있는지도 알아보았다.

  • PDF

Computational Study on the Conformational Characteristics of Calix[4]pyrrole Derivatives

  • Hong, Joo-Yeon;Son, Min-Kyung;Ham, Si-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.423-428
    • /
    • 2009
  • The comparative study of three calix[4]heterocycles (calix[4]pyrrole, calix[4]furan, and calix[4]thiophene) has been theoretically performed by using high-level density functional theory (DFT) at the MPWB1K/6-311G$^{**}$//B3LYP/6- 311G$^{**}$ level. The effect of different hetero-atoms (nitrogen, oxygen, and sulfur) placed in the heterocycles on the conformational flexibility, thermodynamic stability order, cavity sizes, charge distributions, and binding propensities are examined. The thermodynamic stability differences between the conformers are found to be much greater in calix[4]pyrrole compared to those in calix[4]furan and calix[4]thiophene. Relatively larger NH group and higher dipole of a pyrrole ring in calix[4]pyrrole contribute to the higher energy barrier for the conformational conversions and relatively rigid potential energy surface compared to the case of calix[4]furan and calix[4]thiophene. The computational results herein provide theoretical understanding of the conformational flexibility and the thermodynamic nature which can be applied to understand the complexation behavior of the three calix[4]heterocycles.

Investigation on Reaction Pathways for ZnO Formation from Diethylzinc and Water during Chemical Vapor Deposition

  • Kim, Young-Seok;Won, Yong-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1573-1578
    • /
    • 2009
  • A computational study of the reactions between Zn-containing species, the products of the thermal decomposition of diethylzinc (DEZn) and water was investigated. The Zn-containing species – $C_2H_5)_2,\;HZnC_2H_5,\;and\;(ZnC_2H_5)_2$ – were assumed to react with water during ZnO metal organic chemical vapor deposition (MOCVD). Density functional theory (DFT) calculations at the level of B3LYP/6-311G(d) were employed for the geometry optimization and thermodynamic property evaluation. As a result dihydroxozinc, $Zn(OH)_2$, was the most probable reaction product common for all three Zn-containing species. A further clustering of $Zn(OH)_2$ was investigated to understand the initial stage of ZnO film deposition. In experiments, the reactions of DEZn and water were examined by in-situ Raman scattering in a specially designed MOCVD reactor. Although direct evidence of $Zn(OH)_2$ was not observed, some relevant reaction intermediates were successfully detected to support the validity of the gas phase reaction pathways proposed in the computational study.

쌍안정성을 가지는 단분자 기억소자 디자인

  • Park, Tae-Yong
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.37-52
    • /
    • 2013
  • 무어의 법칙에 따르면, 반도체의 집적도 2년마다 2배씩 증가한다고 한다. 무어의 법칙은 지금까지는 집적회로 기술의 발전을 잘 예측했다. 하지만 트랜지스터의 사이즈를 줄일수록 누수전류와 회로의 저항을 조절하기 어렵기 때문에 트랜지스터의 소형화에는 한계가 있다. 우리는 곧 무어의 법칙의 한계를 맞이할 것이다. 그래서 트랜지스터를 더욱 소형화시키기 위해서는 bottom-up analysis가 필요한 시점이다. Top-down analysis가 초기의 커다란 트랜지스터에서 점점 소형화를 시켜 작은 트랜지스터를 만든다는 개념인 반면, Bottom-up analysis는 처음부터 작은 분자를 조작하여 트랜지스터와 같은 성질을 띄도록 만드는 개념이다. 분자가 기억소자로서 이용되려면 저항이 다른 2가지 안정한 상태가 필요하다. 이번 연구에서 나는 기억소자를 디자인 하기 위하여 high spin state와 low spin state 두 가지 안정한 상태를 가지는 spin crossover complex를 이용하기로 했다. 이전의 연구에서 spin crossover 는 전기장을 이용해서도 유도될 수 있다고 확신하였고, 이를 이용해서 기억소자를 디자인하기로 하였다. 이번 연구를 위해서 symmetry를 가지는 octahedral spin crossover complex를 디자인하였고 이를 '기억 분자'라고 명명했다. 그리고 이 분자의 high spin state와 low spin state가 전기장을 이용하여 서로 바뀔 수 있는지 가능성을 DFT with B3LYP functional을 이용해서 비교했다. 그 결과로 전기장을 이용하여 기억분자의 spin crossover을 일으킬 수는 있지만 abnormally strong electric field를 써야 한다는 사실을 알아냈다. 이번 연구를 토대로 추후의 연구를 위해, 기억소자가 되기 위하여 분자가 어떤 특징을 만족시켜야 하는지를 분석했다.

  • PDF

Theoretical Study of Acetic Acid-Sulfur Dioxide Complexes (Acetic Acid-Sulfur Dioxide 복합체에 대한 이론 연구)

  • Lee, Sang-Myeong;Sung, Eun-Mo
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.3
    • /
    • pp.209-214
    • /
    • 2015
  • The formation of complexes between SO2 and acetic acid was studied theoretically. The ab initio and DFT calculations were performed with MP2 and B3LYP methods using 6-311++G(d,p), aug-cc-pVDZ and aug-cc-pVTZ basis sets. Six stable complexes were identified, and three stable bidentate complexes, C1, C2 and C3, were formed between SO2 and syn-acetic acid, which is more stable form of acetic acid. Anti-acetic acid also form three complexes, C4, C5 and C6, with SO2. C4 is bidentate and C5, C6 are monodentate complexes, which are less stable. The most stable complex, C1 has S⋯O=C and O⋯H-O interactions, and the S⋯O and O⋯H distances are less than the sum of van der Waals radii. The vibrational frequencies of complexes were calculated and were compared with those of monomers. The frequency shifts after formation of complex were found, and the overall pattern of frequency shifts relative to monomers is similar among the six complexes.

Crystal Structure, Fluorescence Property and Theoretical Calculation of the Zn(II) Complex with o-Aminobenzoic Acid and 1,10-Phenanthroline

  • Zhang, Zhongyu;Bi, Caifeng;Fan, Yuhua;Zhang, Xia;Zhang, Nan;Yan, Xingchen;Zuo, Jian
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1697-1702
    • /
    • 2014
  • A novel complex [$Zn(phen)(o-AB)_2$] [phen: 1,10-phenanthroline o-AB: o-aminobenzoic acid] was synthesized and characterized by elemental analysis and X-ray diffraction single-crystal analysis. The crystal crystallizes in monoclinic, space group P2(1)/c with $a=7.6397(6){\AA}$, $b=16.8761(18){\AA}$, $c=17.7713(19){\AA}$, ${\alpha}=90^{\circ}$, ${\beta}=98.9570(10)^{\circ}$, ${\gamma}=90^{\circ}$, $V=2.2633(4)nm^3$, Z = 4, F(000) = 1064, S = 1.058, $Dc=1.520g{\cdot}cm^{-3}$, $R_1=0.0412$, $wR_2=0.0948$, ${\mu}=1.128mm^{-1}$. The Zn(II) is six coordinated by two nitrogen and four oxygen atoms from the 1,10-phenanthroline and o-aminobenzoic acid to furnish a distorted octahedron geometry. The complex exhibits intense fluorescence at room temperature. Theoretical studies of the title complex were carried out by density functional theory (DFT) B3LYP method. CCDC: 898291.