• Title/Summary/Keyword: DEFORM3D

Search Result 123, Processing Time 0.026 seconds

Numerical Analysis of Shape Modification for the Composite Structures using SMA Strip Actuator (형상기억합금 작동기를 이용한 복합재료 구조물의 형상 변형 해석)

  • Roh Jin-Ho;Han Jae-Hung;Lee In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.278-281
    • /
    • 2004
  • In this paper, the thermomechanical responses of shape memory alloy (SMA) actuators and their applications as the shape adaptive structures combining SMA actuators produced in the form of strip with composite structures are investigated. The numerical algorithm of the 3-D SMA thermomechanical constitutive equations based on Lagoudas model is implemented to analyze the unique characteristics of SMA strip. Also, the incremental SMA constitutive equations are implemented in the user subroutine UMAT by using ABAQUS finite element program. The shape change of structure is caused by initially strained SMA strip bonded on the surface of the composite structure when thermally activated. Numerical results show that SMA strip actuator can generate enough recovery force to deform the composite structure and sustain the deformed shape subjected to large external load, simultaneously.

  • PDF

A Study on the Forming Process of Honeycomb Core by Finite Element Analysis (유한요소해석에 의한 하니컴 코어의 성형공정에 관한 연구)

  • Han, Kyu-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.58-64
    • /
    • 2011
  • In this paper, research on the manufacturing technology of hexagonal structure core is investigated. Also the optimal forming process of the honeycomb core is developed and the rolling process is analyzed using finite element code, $DEFORM^{TM}$-3D. The standard honeycomb has a uniform hexagonal structure defined by the material, cell size, cell wall thickness and bulk density. Honeycomb core products can be made from any thin, flat material. The most common cell configuration is the hexagon but there are many other shapes for special applications. Because of the precision shape and the thin thickness, the honeycomb core is not easy to manufacture in the metal forming process. Through this study it was confirmed that after the rolling process, the section of honeycomb close to the standard shape can be obtained. This result is reflected to the manufacturing process design for the honeycomb core.

A Study on the Manufacturing of Brake tube and Flare nut for Automobiles (자동차용 브레이크 튜브 및 플레어 너트의 제조에 관한 연구)

  • Han, Kyu-Taek
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.113-119
    • /
    • 2008
  • The purpose of the present paper is to investigate the optimal shape of the brake tube-end and flare nut for automobiles using the $DEFORM^{TM}-3D$, finite element code. A flare nut is a small and important part used to join a brake tube-end in automobiles. In this instance, we studied the optimal forging processes for the tube-end and flare nut. Finite element analysis has been carried out to predict an optimal shape of the tube-end and flare nut. Also the simulation results were reflected to the forging processes design for the tube-end and flare nut. The shape of the tube-end and flare nut is in agreement with the finite element simulation and the test results.

A Study on the Optimal die angle of the Torsional Forward Extrusion Process (비틀림 전방압출 공정의 최적다이각에 관한 연구)

  • Lee S. I.;Kim Y. H.;Ma Xiang
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.11a
    • /
    • pp.23-32
    • /
    • 2002
  • The torsional forward extrusion is the process that is executed by punch travel and die rotation. The advantages of having the die rotation on this process are that forming load can be reduced and optimal die angle can be increased. This provides a possibility to extrude cold-worded material where a large extrusion force and die angle are required. Also, this process can improve the material properties owing to the high deformation and uniform strain distribution. The forming load and optimal die angle of this process are determined by the upper bound analysis using stream function and the optimization technique. To verify the theoretical result, we have carried out experiments and FE simulations using DEFORM3D.

  • PDF

Prediction of the Forming Load of Non-Axisymmetric Isothermal Forging using Approximate Similarity Theory (근사 상사 이론을 이용한 비축대칭 등온 단조의 가공하중 예측)

  • 최철현
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.71-75
    • /
    • 1999
  • An approximate similarity theory has been applied to predict the forming load of non-axisymmetric forging of aluminum alloys through model material tests. The approximate similarity theory is applicable when strain rate sensitivity geometrical size and die velocity of model materials are different from those of real materials. Actually the forming load of yoke which is an automobile part made of aluminum alloys(Al-6061) is predicted by using this approximate similarity theory. Firstly upset forging tests are have been carried out to determine the flow curves of three model materials and aluminum alloy(Al-6061) and a suitable model material is selected for model material test of Al-6061 And then and forging tests of aluminum yokes have been performed to verify the forming load predicted from the model material which has been selected from above upset forging tests, The forming loads of aluminum yoke forging predicted by this approximate similarity theory are in good agreement with the experimental results of Al-6061 and the results of finite element analysis using DEFORM-3D.

  • PDF

A Study on the Forging Prototype Manufacture of Aluminium 7050 Alloys (Al7050합금의 단조 시제품 제작에 관한 연구)

  • Kang, Seong-Ki;Lee, Jea-Kun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.39-45
    • /
    • 2012
  • In this paper, process conditions are investigated for elimination of the grain coarsening and improved material flow during forging process by both of experiments and FEM analysis. Particular interest has been given to understand role of preform shape on the grain coarsening behavior and magnitude of the hammer forging load. As the results of FEM simulation by using DEFORM-3D, the simulated forging loads were 2,200ton in the case of a machined bar which is machined from 65mm to 60mm diameter, and below 1,900ton in the case of machined preform, respectively. The use of preform has been beneficial for reduction of the forging load and elimination of the grain coarsening. However, in the case of as received bar and the round bar, which was machined to 2.5mm thickness in surface layer, some degree of local grain coarsening behavior has been observed. The optimized preform shape could be properly designed by applying the FEM simulation.

Forming Simulation of the Extrn-Bending Process of the Angle Product with '${\wedge}$' Section ([ '${\wedge}$' ]단면 앵글 구조재의 압출굽힘 가공에 관한 성형해석)

  • Lee K. K.;Jin I. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.346-349
    • /
    • 2004
  • In the previous experimental study about extru-bending of angle product, the bending of extruded angle products with the '${\wedge}$' section and 'ㄱ' section can be abtained by the hot metal extru-bending machine with the two punches moving in the different velocity. The bending curvature can be controlled by the different velocity of billets through the two-hole container. This paper describes simulation of extru-bending process by the difference of punch velocities. The result of the forming simulation by $DEFORM^{TM}-3D$ shows that the bending phenomenon at the die exit during extrusion can be abtained by the two punches moving in the different velocity. And it is possible to design extrusion dies and to control the curvature of product through the simulation of extru-bending process by analysis

  • PDF

A Study of the Torsional Forward Extrusion Using the Stream Function. (유선 함수를 이용한 비틀림 전방압출 공정에 관한 연구)

  • 이상인;김영호;이종헌
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.329-332
    • /
    • 2002
  • The upper bound analysis by stream function is used to study the torsional forward extrusion. The torsional forward extrusion process not only reduces forming load but also increase optimal die angle. Optimal die angle is determined by the optimization technique. The advantages of this process are that the low capacity of pressing machine can be used and the process with a large die angle can be applied. To verify the theoretical result, we have carried out experiments using model material (plasticine) and FE simulations using DEFORM3D.

  • PDF

Effect of Processing Condition on the Hot Extrusion of Al-Zn-Mg-Sc Alloy (Al-Zn-Mg-Sc 합금의 고온압출에 미치는 공정조건의 영향 분석)

  • Kim, Nam-Yong;Kim, Jin-Ho;Yeom, Jong-Taek;Lee, Dong-Geun;Lim, Su-Gun;Park, Nho-Kwang;Kim, Jeoung-Han
    • Transactions of Materials Processing
    • /
    • v.15 no.2 s.83
    • /
    • pp.143-147
    • /
    • 2006
  • Effect of processing condition on the hot extrusion of Al-Zn-Mg-Sc alloy was investigated. For this purpose, hot compression test and FE-simulation were conducted via Thermecmaster-Z and DEFORM-3D, respectively. The microstructure evolution during hot extrusion and post heat-treatment was investigated and deformation mechanisms were analyzed by constructing processing map. FE-simulation results show that the temperature difference between container and billet has considerable influence on the final shape of extruded T-shape bar. The relation between applied load and processing time was predicted by the FE-analysis as well as punch speed vs. stroke chart.

Effect of processing condition on the hot extrusion of Al-Zn-Mg-Sc alloy (Al-Zn-Mg-Sc 합금의 고온압출에 미치는 공정조건의 영향 분석)

  • Yeom Jong Taek;Kim Nam Yong;Lim Su-Keun;Park Nho Kwang;Kim Jeoung Han
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.202-205
    • /
    • 2005
  • Effect of processing condition on the hot extrusion of Al-Zn-Mg-Sc alloy was investigated. For this purpose, hot compression test and FE-simulation were conducted via Thermecmasteer-Z and DEFORM-3D, respectively. The microstructure evolution during hot extrusion and post heat-treatment was investigated and deformation mechanisms were analyzed by constructing processing map. FE-simulation results show that the temperature difference between container and billet has considerable influence on the final shape of extruded T-shape bar. The relation between applied load and processing time was predicted by the FE-analysis as well as punch speed vs. stroke chart.

  • PDF