• Title/Summary/Keyword: DDoS detection

Search Result 164, Processing Time 0.023 seconds

Verification of Extended TRW Algorithm for DDoS Detection in SIP Environment (SIP 환경에서의 DDoS 공격 탐지를 위한 확장된 TRW 알고리즘 검증)

  • Yum, Sung-Yeol;Ha, Do-Yoon;Jeong, Hyun-Cheol;Park, Seok-Cheon
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.4
    • /
    • pp.594-600
    • /
    • 2010
  • Many studies are DDoS in Internet network, but the study is the fact that is not enough in a voice network. Therefore, we designed the extended TRW algorithm that was a DDoS attack traffic detection algorithm for the voice network which used an IP data network to solve upper problems in this article and evaluated it. The algorithm that is proposed in this paper analyzes TRW algorithm to detect existing DDoS attack in Internet network and, design connection and end connection to apply to a voice network, define probability function to count this. For inspect the algorithm, Set a threshold and using NS-2 Simulator. We measured detection rate by an attack traffic type and detection time by attack speed. At the result of evaluation 4.3 seconds for detection when transmitted INVITE attack packets per 0.1 seconds and 89.6% performance because detected 13,453 packet with attack at 15,000 time when transmitted attack packet.

DDoS Attack Tolerant Network using Hierarchical Overlay (계층적 오버레이를 이용한 DDoS 공격 감내 네트워크)

  • Kim, Mi-Hui;Chae, Ki-Joon
    • The KIPS Transactions:PartC
    • /
    • v.14C no.1 s.111
    • /
    • pp.45-54
    • /
    • 2007
  • As one of the most threatening attacks, DDoS attack makes distributed multiple agents consume some critical resources at the target within the short time, thus the extent and scope of damage is serious. Against the problems, the existing defenses focus on detection, traceback (identification), and filtering. Especially, in the hierarchical networks, the traffic congestion of a specific node could incur the normal traffic congestion of overall lower nodes, and also block the control traffic for notifying the attack detection and identifying the attack agents. In this paper, we introduce a DDoS attack tolerant network structure using a hierarchical overlay for hierarchical networks, which can convey the control traffic for defense such as the notification for attack detection and identification, and detour the normal traffic before getting rid of attack agents. Lastly, we analyze the overhead of overlay construction, the possibility of speedy detection notification, and the extent of normal traffic transmission in the attack case through simulation.

Policy Based DDoS Attack Mitigation Methodology (정책기반의 분산서비스거부공격 대응방안 연구)

  • Kim, Hyuk Joon;Lee, Dong Hwan;Kim, Dong Hwa;Ahn, Myung Kil;Kim, Yong Hyun
    • Journal of KIISE
    • /
    • v.43 no.5
    • /
    • pp.596-605
    • /
    • 2016
  • Since the Denial of Service Attack against multiple targets in the Korean network in private and public sectors in 2009, Korea has spent a great amount of its budget to build strong Internet infrastructure against DDoS attacks. As a result of the investments, many major governments and corporations installed dedicated DDoS defense systems. However, even organizations equipped with the product based defense system often showed incompetency in dealing with DDoS attacks with little variations from known attack types. In contrast, by following a capacity centric DDoS detection method, defense personnel can identify various types of DDoS attacks and abnormality of the system through checking availability of service resources, regardless of the types of specific attack techniques. Thus, the defense personnel can easily derive proper response methods according to the attacks. Deviating from the existing DDoS defense framework, this research study introduces a capacity centric DDoS detection methodology and provides methods to mitigate DDoS attacks by applying the methodology.

Combining Adaptive Filtering and IF Flows to Detect DDoS Attacks within a Router

  • Yan, Ruo-Yu;Zheng, Qing-Hua;Li, Hai-Fei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.3
    • /
    • pp.428-451
    • /
    • 2010
  • Traffic matrix-based anomaly detection and DDoS attacks detection in networks are research focus in the network security and traffic measurement community. In this paper, firstly, a new type of unidirectional flow called IF flow is proposed. Merits and features of IF flows are analyzed in detail and then two efficient methods are introduced in our DDoS attacks detection and evaluation scheme. The first method uses residual variance ratio to detect DDoS attacks after Recursive Least Square (RLS) filter is applied to predict IF flows. The second method uses generalized likelihood ratio (GLR) statistical test to detect DDoS attacks after a Kalman filter is applied to estimate IF flows. Based on the two complementary methods, an evaluation formula is proposed to assess the seriousness of current DDoS attacks on router ports. Furthermore, the sensitivity of three types of traffic (IF flow, input link and output link) to DDoS attacks is analyzed and compared. Experiments show that IF flow has more power to expose anomaly than the other two types of traffic. Finally, two proposed methods are compared in terms of detection rate, processing speed, etc., and also compared in detail with Principal Component Analysis (PCA) and Cumulative Sum (CUSUM) methods. The results demonstrate that adaptive filter methods have higher detection rate, lower false alarm rate and smaller detection lag time.

CNN Based Real-Time DNS DDoS Attack Detection System (CNN 기반의 실시간 DNS DDoS 공격 탐지 시스템)

  • Seo, In Hyuk;Lee, Ki-Taek;Yu, Jinhyun;Kim, Seungjoo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.3
    • /
    • pp.135-142
    • /
    • 2017
  • DDoS (Distributed Denial of Service) exhausts the target server's resources using the large number of zombie pc, As a result normal users don't access to server. DDoS Attacks steadly increase by many attacker, and almost target of the attack is critical system such as IT Service Provider, Government Agency, Financial Institution. In this paper, We will introduce the CNN (Convolutional Neural Network) of deep learning based real-time detection system for DNS amplification Attack (DNS DDoS Attack). We use the dataset which is mixed with collected data in the real environment in order to overcome existing research limits that use only the data collected in the experiment environment. Also, we build a deep learning model based on Convolutional Neural Network (CNN) that is used in pattern recognition.

Assessment of Collaborative Source-Side DDoS Attack Detection using Statistical Weight (통계적 가중치를 이용한 협력형 소스측 DDoS 공격 탐지 기법 성능 평가)

  • Yeom, Sungwoong;Kim, Kyungbaek
    • KNOM Review
    • /
    • v.23 no.1
    • /
    • pp.10-17
    • /
    • 2020
  • As the threat of Distributed Denial-of-Service attacks that exploit weakly secure IoT devices has spread, research on source-side Denial-of-Service attack detection is being activated to quickly detect the attack and the location of attacker. In addition, a collaborative source-side attack detection technique that shares detection results of source-side networks located at individual sites is also being activated to overcome regional limitations of source-side detection. In this paper, we evaluate the performance of a collaborative source-side DDoS attack detection using statistical weights. The statistical weight is calculated based on the detection rate and false positive rate corresponding to the time zone of the individual source-side network. By calculating weighted sum of the source-side DoS attack detection results from various sites, the proposed method determines whether a DDoS attack happens. As a result of the experiment based on actual DNS request to traffic, it was confirmed that the proposed technique reduces false positive rate 2% while maintaining a high attack detection rate.

Performance Analysis of DoS/DDoS Attack Detection Algorithms using Different False Alarm Rates (False Alarm Rate 변화에 따른 DoS/DDoS 탐지 알고리즘의 성능 분석)

  • Jang, Beom-Soo;Lee, Joo-Young;Jung, Jae-Il
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.139-149
    • /
    • 2010
  • Internet was designed for network scalability and best-effort service which makes all hosts connected to Internet to be vulnerable against attack. Many papers have been proposed about attack detection algorithms against the attack using IP spoofing and DoS/DDoS attack. Purpose of DoS/DDoS attack is achieved in short period after the attack begins. Therefore, DoS/DDoS attack should be detected as soon as possible. Attack detection algorithms using false alarm rates consist of the false negative rate and the false positive rate. Moreover, they are important metrics to evaluate the attack detections. In this paper, we analyze the performance of the attack detection algorithms using the impact of false negative rate and false positive rate variation to the normal traffic and the attack traffic by simulations. As the result of this, we find that the number of passed attack packets is in the proportion to the false negative rate and the number of passed normal packets is in the inverse proportion to the false positive rate. We also analyze the limits of attack detection due to the relation between the false negative rate and the false positive rate. Finally, we propose a solution to minimize the limits of attack detection algorithms by defining the network state using the ratio between the number of packets classified as attack packets and the number of packets classified as normal packets. We find the performance of attack detection algorithm is improved by passing the packets classified as attacks.

A Study on DDoS(Distributed Denial of Service) Attack Detection Model Based on Statistical (통계 기반 분산서비스거부(DDoS)공격 탐지 모델에 관한 연구)

  • Kook, Yoon-Ju;Kim, Yong-Ho;Kim, Jeom-Goo;Kim, Kiu-Nam
    • Convergence Security Journal
    • /
    • v.9 no.2
    • /
    • pp.41-48
    • /
    • 2009
  • Distributed denial of service attack detection for more development and research is underway. The method of using statistical techniques, the normal packets and abnormal packets to identify efficient. In this paper several statistical techniques, using a mix of various offers a way to detect the attack. To verify the effectiveness of the proposed technique, it set packet filtering on router and the proposed DDoS attacks detection method on a Linux router. In result, the proposed technique was detect various attacks and provide normal service mostly.

  • PDF

Supervised learning-based DDoS attacks detection: Tuning hyperparameters

  • Kim, Meejoung
    • ETRI Journal
    • /
    • v.41 no.5
    • /
    • pp.560-573
    • /
    • 2019
  • Two supervised learning algorithms, a basic neural network and a long short-term memory recurrent neural network, are applied to traffic including DDoS attacks. The joint effects of preprocessing methods and hyperparameters for machine learning on performance are investigated. Values representing attack characteristics are extracted from datasets and preprocessed by two methods. Binary classification and two optimizers are used. Some hyperparameters are obtained exhaustively for fast and accurate detection, while others are fixed with constants to account for performance and data characteristics. An experiment is performed via TensorFlow on three traffic datasets. Three scenarios are considered to investigate the effects of learning former traffic on sequential traffic analysis and the effects of learning one dataset on application to another dataset, and determine whether the algorithms can be used for recent attack traffic. Experimental results show that the used preprocessing methods, neural network architectures and hyperparameters, and the optimizers are appropriate for DDoS attack detection. The obtained results provide a criterion for the detection accuracy of attacks.

An Improved Intrusion Detection System for SDN using Multi-Stage Optimized Deep Forest Classifier

  • Saritha Reddy, A;Ramasubba Reddy, B;Suresh Babu, A
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.374-386
    • /
    • 2022
  • Nowadays, research in deep learning leveraged automated computing and networking paradigm evidenced rapid contributions in terms of Software Defined Networking (SDN) and its diverse security applications while handling cybercrimes. SDN plays a vital role in sniffing information related to network usage in large-scale data centers that simultaneously support an improved algorithm design for automated detection of network intrusions. Despite its security protocols, SDN is considered contradictory towards DDoS attacks (Distributed Denial of Service). Several research studies developed machine learning-based network intrusion detection systems addressing detection and mitigation of DDoS attacks in SDN-based networks due to dynamic changes in various features and behavioral patterns. Addressing this problem, this research study focuses on effectively designing a multistage hybrid and intelligent deep learning classifier based on modified deep forest classification to detect DDoS attacks in SDN networks. Experimental results depict that the performance accuracy of the proposed classifier is improved when evaluated with standard parameters.