최근 발생하는 인터넷 상의 악성 행위는 많은 부분 악성 봇넷과 관련이 있다. DDoS 공격이나 스팸 발송, 악성코드 전파, 개인 정보 유출, 피싱 등 대부분의 악성 행위들이 봇넷에 의해 행해지고 있다. 이러한 봇넷을 탐지하고자 네트워크 단에서 악성 봇넷 탐지 시스템이 활발히 연구되고 있지만 특정한 프로토콜이나 행위, 공격을 수행하는 봇넷에만 적용 가능하다는 단점을 가지고 있다. 이에 본 논문에서는 악성 봇넷을 탐지하기 위한 척도 선정에 관한 연구를 진행하였다. 연구를 위해 악성 봇넷의 트래픽을 수집 및 분석하여 분석된 네트워크 트래픽의 특징에 기반 한 척도를 선정하였다. 본 연구를 통해 악성 봇넷을 탐지하는데 도움이 될 수 있을 것으로 기대한다.
Nowadays, Distributed Denial of Service (DDoS) attacks have gained increasing popularity and have been a major factor in a number of massive cyber-attacks. It could easily exhaust the computing and communicating resources of a victim within a short period of time. Therefore, we have to find the method to detect and prevent the DDoS attack. Recently, there have been some researches that provide the methods to resolve above problem, but it still gets some limitations such as low performance of detecting and preventing, scope of method, most of them just use on cloud server instead of network, and the reliability in the network. In this paper, we propose solutions for (1) handling multiple DDoS attacks from multiple IP address and (2) handling the suspicious attacks in the network. For the first solution, we assume that there are multiple attacks from many sources at a times, it should be handled to avoid the conflict when we setup the preventing rule to switches. In the other, there are many attacks traffic with the low volume and same destination address. Although the traffic at each node is not much, the traffic at the destination is much more. So it is hard to detect that suspicious traffic with the sampling based method at each node, our method reroute the traffic to another server and make the analysis to check it deeply.
본 논문은 CPN(Colored Petri Nets)을 이용한 Honypot 모델의 설계 및 구현에 관한 것이다. 제안된 Honeypot 모델은 해커의 침입을 능동적으로 유도하고 침입을 탐지 및 행동패턴의 파악을 위해 보안커널 모듈과 유도된 해커의 활동을 위한 가상 모듈로 구성되어 있으며, CPN을 이용한 모델과 기존의 Denning 모델 및 Shieh 모델과 비교 분석하였다. 본 논문에서 제안된 CPN을 이용한 Honeypot 모델은 침입패턴의 특성에 대한 분류가 가능하고, 침입패턴의 모델링과 패턴매칭 과정의 모델링이 가능하며. 다중 호스트를 통한 DDoS 공격의 탐지가 가능하고, 마지막으로 침입패턴의 분석을 위한 학습모델의 기반 제공이 가능하다.
조직이 운영하는 네트워크의 규모가 방대해지고, 인터넷 사용이 활성화되면서 보안의 중요성도 함께 증가하였다. 그러나 최근 보안의 핵심으로 부각되고 있는 침입탐지 시스템들은 인터넷상의 공격들에 대한 적절한 분석이나 효율적인 대응책을 제공해 주기보다는, 대량의 침입탐지 정보를 생성시켜 관리자의 부담을 가중시키고 있다. 본 논문에서는 침입탐지 시스템이 생성하는 대량의 침입탐지 정보들간에 존재하는 연관성을 분석하여 대응에 필요한 고 수준의 정보를 실시간으로 생성해 냄으로써 관리 및 분석의 효율성을 증진시키고, 나아가서는 분산 서비스 거부 공격(DDoS) 같은 대규모의 공격까지도 조기에 탐지해 낼 수 있는 능력을 갖춘 침입탐지 정보 분석 시스템을 제안한다. 그리고 제안된 시스템의 성능 분석을 위해 각 모듈의 처리 효율을 측정하고 알려진 공격 시나리오 기반의 시험 평가를 실시한다.
최근의 사이버 공격은 경쟁사에 대한 DDoS(Distributed Denial of Service)공격과 기밀정보 유출, 일반 사용자들의 금융정보 유출 광고성 스팸메일의 대량 발송 등 불법 행위를 통해 경제적 이득을 취하려는 형태로 바뀌어가고 있다. 그 중심에 있는 봇넷은 봇이라 불리는 감염된 호스트들의 네트워크로서 최근 발생하는 많은 사이버 공격에 이용되고 있다. 이러한 봇넷은 수많은 변종과 다양한 탐지 회피 기술로 무장하고 전 세계 네트워크 전반에 걸쳐 그 세력을 확장해 가고 있다. 하지만 현존하는 봇넷 대응 솔루션은 대부분 시그네처 기반 탐지 방법을 이용하거나, 극히 제한적인 지역의 봇넷를 탐지하고 있어, 총괄적 봇넷 대응에는 미흡한 것이 현실이다. 본 논문에서는 봇넷을 제어하기 위해 사용되는 IRC(Internet Relay Chat) 통신 세션에서 서버와 연결하는 채널과의 관계 분석을 통하여 봇에 감염된 호스트와 연결된 IRC서버 채널을 탐지하는 방법을 제안한다.
DDoS(Distributed Denial of Service) 공격에 사용되는 네트워크 트래픽과 정상적인 서비스를 위한 네트워크 트래픽을 구분해 내는 것은 쉽지 않다. 정상적인 패킷을 유해 트래픽으로 판단하고 유해 트래픽의 공격자의 의도대로 서비스를 못하는 경우가 발생하므로, DDoS 공격으로부터 시스템을 보호하기 위해서는 공격 트래픽에 대한 정확한 분석과 탐지가 우선되어야 한다. IPv6 환경으로 전환될 때 발생하는 유해 트래픽에 대한 연구가 미약한 상태이므로, 본 논문에서는 IPv6 환경에서 NETWOX로 공격을 수행하고 공격 트래픽을 모니터링한 후 MIB(Management Information Base)객체를 지수 평활법을 적용하여 예측치를 구한 후 임계치를 산정하여 공격을 판별하는 방법을 제안한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권7호
/
pp.3671-3689
/
2019
Software defined networking brings unique security risks such as control plane saturation attack while enhancing the performance of wireless sensor networks. The attack is a new type of distributed denial of service (DDoS) attack, which is easy to launch. However, it is difficult to detect and hard to defend. In response to this, the attack threat model is discussed firstly, and then a DDoS attack prevention extension, called FuzzyGuard, is proposed. In FuzzyGuard, a control network with both the protection of data flow and the convergence of attack flow is constructed in the data plane by using the idea of independent routing control flow. Then, the attack detection is implemented by fuzzy inference method to output the current security state of the network. Different probabilistic suppression modes are adopted subsequently to deal with the attack flow to cost-effectively reduce the impact of the attack on the network. The prototype is implemented on SDN-WISE and the simulation experiment is carried out. The evaluation results show that FuzzyGuard could effectively protect the normal forwarding of data flow in the attacked state and has a good defensive effect on the control plane saturation attack with lower resource requirements.
인터넷 서비스의 질을 떨어뜨리고 온라인 범죄를 유발시키는 네트워크 공격들은 오늘날 현대 사회에서 해결해야 될 문제 중 하나이다. 이러한 문제 해결을 위해 시그니처 IDS(Intrusion Detection System)라는 침입 탐지 시스템이 개발되었지만 이들은 기존에 알려진 유형의 공격만 탐지해 낸다. 결과적으로 알려지지 않은 공격들에 대해서는 탐지하지 못하기 때문에 네트워크 공격 탐지를 위한 근본적인 해결책이라 할 수 없다. 본 논문에서는 시그니처 IDS의 단점을 보완하고자 K-평균 알고리즘 기반의 네트워크 유해트래픽 탐지 방법을 제안한다.
수많은 기업체, 기관, 개인 사용자가 대규모 DDos(Distributed Denial of Service)공격에 의한 피해에 노출되고 있다. DDoS 공격은 좀비PC라 불리는 수많은 컴퓨터들과 계층적 지령구조를 좀비PC들을 제어하는 네트워크인 봇넷을 통하여 수행된다. 통상의 악성코드 탐지 소프트웨어나 백신은 멀웨어를 탐지하기 위해서 사전에 심층 분석을 통한 멀웨어 시그니처를 밝혀야 하며, 이를 탐지 소프트웨어나 백신에 업데이트하여야 한다. 이 과정은 방대한 시간과 비용이 소모된다. 본고에서는 인공신경망 모델을 이용하여 주기적인 시그니처 사전 업데이트가 필요 없는 봇넷 탐지기법을 제안한다. 제안하는 인공신경망 모델은 Word2Vec과 가속화 계층적 밀집도 기반 클러스터링을 활용한다. 제안기법의 봇넷 탐지성능은 CTU-13 데이터셋을 이용하여 평가하였다. 성능평가 결과, 분류 정확도 99.9%로 기존 방법에 비해 우수한 멀웨어 탐지율을 보인다.
International Journal of Computer Science & Network Security
/
제22권6호
/
pp.67-74
/
2022
One type of network security breach is the availability breach, which deprives legitimate users of their right to access services. The Denial of Service (DoS) attack is one way to have this breach, whereas using the Intrusion Detection System (IDS) is the trending way to detect a DoS attack. However, building IDS has two challenges: reducing the false alert and picking up the right dataset to train the IDS model. The survey concluded, in the end, that using a real dataset such as MAWILab or some tools like ID2T that give the researcher the ability to create a custom dataset may enhance the IDS model to handle the network threats, including DoS attacks. In addition to minimizing the rate of the false alert.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.