• Title/Summary/Keyword: DCPD Method

Search Result 37, Processing Time 0.032 seconds

The Change in Interfacial and Mechanical Properties for Glass Fiber/p-DCPD Composites with Degree of Ruthenium Catalyst Activation (루테늄촉매 활성정도에 따른 유리섬유/폴리다이사이클로펜타다이엔 복합재료의 기계 및 계면물성 변화)

  • Shin, Pyeong-Su;Kim, Jong-Hyun;Baek, Yeong-Min;Park, Ha-Seung;Kwon, Dong-Jun;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.19 no.1
    • /
    • pp.13-18
    • /
    • 2018
  • At ruthenium (Ru) catalyst was exposed from the atmosphere, the degree of catalyst activation decreased. The change of catalyst activity with the number of days of exposure to air for the Ru catalyst was confirmed using the surface tension method quantitatively. Mechanical properties and surfactant change after polymerization by DCPD using Ru catalyst for each air exposure day was evaluated. The Ru catalyst mixed with a dilution agent was exposed in the air and color was monitored for each day. Surface tension was measured using Wilhelmy and PTFE and associated with different catalyst activities. Heat was measured in real time during polymerizing DCPD with Ru catalyst. After polymerization, tensile strength was measured for p-DCPD and the change of material property was measured. Interfacial properties were also evaluated via microdroplet pull-out tests between glass fiber and p-DCPD. The surface tension was stable until the 4 days (33 dyne/cm) whereas the surface energy increased at the 10 days (34 dyne/cm), which could be correlated with oxidation of the catalyst. Tensile property and interfacial shear strength (IFSS) was also stable until the 4 days (tensile strength: 38 MPa and IFSS: 26 MPa) whereas the mechanical property decrease at 10 days (tensile strength: 15 MPa and IFSS: 3 MPa) dramatically.

The Influence of Distance between Current Supply Points on Potential Drop in DCPD (직류전위차법에서 전류 입출력점 사이 거리가 전위차에 미치는 영향)

  • Lee, Jeong-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.2
    • /
    • pp.104-107
    • /
    • 2009
  • It was verified that the effect of the distance between current input point and output point on direct current potential drop(DCPD) in the material with two-dimensional surface notch. If the distance between potential drop measuring points was fixed at a certain distance, the potential drop was decreased with increasing the distance between current input and output points. Hence it is the effect way to increase sensitivity in DCPD that the current input and output points should be located near the potential measuring points. DCPD was a useful method for surface crack sizing because the potential drop was proportional to the length of notch. When the current input and output points are located near the potential measuring points, even small length crack can be measured by DCPD technique.

Development of the DCPD Method Based on Finite Element Analysis for Measuring Semi-Elliptical Surface Cracks (반타원 표면균열 형상측정을 위한 유한요소 전기장 해석에 기초한 직류전위차법의 개발)

  • Kim, Yeong-Jin;Sim, Do-Jun;Choe, Jae-Bung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1147-1154
    • /
    • 2001
  • One of major problems in analyzing failure mechanism of real components is the accurate measurement of crack size and shape. The DCPD(Direct Current Potential Drop) method has been widely used for the crack measurement of a structure and finite element analysis has been used for the derivation of calibration equations, which relates the potential drop with the crack depth. In this paper, finite element analyses were performed for semi-elliptical surface cracks with various crack shapes(a/c) and crack depths(a/t). As a result, a calibration equation has been derived for the measurement of a semi-elliptical surface crack in wide plates. Analytical results are compared with experimental results to evaluate the validity and the applicability of the derived equation. The proposed method is expected to provide efficient and accurate measurement of a surface crack during crack growth.

Studies on effects of calibration methods and current lead position on the direct current potential drop method for crack length measurement (직류전압강하법에 의한 균열길이 측정에 미치는 도선의 위치 및 보정방법의 영향에 관한 연구)

  • Cho, C.C.;Kim, I.S.;Kim, S.S.;Choe, S.J.;Hur, B.Y.
    • Analytical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.300-306
    • /
    • 1997
  • The effective resolution of the direct current potential drop (DCPD) method for crack length determination is strongly affected by a number of factors including wire locations and calibration method. In the present study, the effects of wire locations, thermal EMF and reference probe locations on the accuracy of calibration methods, including Hicks-Pickard equation and Johnson's equation, were examined with the CT specimens which were nine times larger than the standard specimen. In light of experimental results, it was found that Hicks-Pickard equation can accurately represent the a/W-V/Vo relationship when current input wire is located at the load line. It was also found that the accuracy of DCPD method can be greatly improved with the thermal EMF calibration and the use of Vo value at a/W = 0.241. The use of reference potential was found to be impractical when current input wire is located at the load line.

  • PDF

A Novel Task Scheduling Algorithm Based on Critical Nodes for Distributed Heterogeneous Computing System (분산 이기종 컴퓨팅 시스템에서 임계노드를 고려한 태스크 스케줄링 알고리즘)

  • Kim, Hojoong;Song, Inseong;Jeong, Yong Su;Choi, SangBang
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.116-126
    • /
    • 2015
  • In a distributed heterogeneous computing system, the performance of a parallel application greatly depends on its task scheduling algorithm. Therefore, in order to improve the performance, it is essential to consider some factors that can have effect on the performance of the parallel application in a given environment. One of the most important factors that affects the total execution time is a critical path. In this paper, we propose the CLTS algorithm for a task scheduling. The CLTS sets the priorities of all nodes to improve overall performance by applying leveling method to improve parallelism of task execution and by reducing the delay caused by waiting for execution of critical nodes in priority phase. After that, it conditionally uses insertion based policy or duplication based policy in processor allocation phase to reduce total schedule time. To evaluate the performance of the CLTS, we compared the CLTS with the DCPD and the HCPFD in our simulation. The results of the simulations show that the CLTS is better than the HCPFD by 7.29% and the DCPD by 8.93%. with respect to the average SLR, and also better than the HCPFD by 9.21% and the DCPD by 7.66% with respect to the average speedup.

Dynamic Fracture Testing of Welding part of Nuclear Piping by Using Normalization Method (정규화법을 이용한 원전배관 용접부의 동하중 파괴저항시험)

  • Huh, Yong;Cho, Sung-Keun;Park, Jae-Sil;Seok, Chang-Sung
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.262-267
    • /
    • 2004
  • The unloading compliance method is the most commonly used method to evaluate the fracture resistance characteristics of a material. In dynamic loading condition, the direct current potential drop(DCPD) method has been used because the unloading compliance method can not be applied due to the discontinuity of loading. However, even in the dynamic test using DCPD method, there is a problem that the voltage drops sharply on the initiation of crack. For the reason metioned above, the normalization method was suggested on ASTM E 1820 which is revised recently, as a new method to evaluate the dynamic fracture resistance characteristic. The nomalization method can be used to obtain a fracture resistance curve directly from a load-load line displacement. In this study, we obtained two fracture resistance curves from static test of welding part of nuclear piping both by unloading compliance and nomalization method. The two curves were almost same each other, so the adaptability of the nomalization method has been proved. We conducted a dynamic fracture resistance test for the same material. The fracture resistance curve from the dynamic test was obtained by normalization method and compared to that of the static test result.

  • PDF

Statistical analysis of direct current potential drop data (직류전위차법 자료에 대한 통계적 자료분석)

  • Lee, Jeong-Hee;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.1
    • /
    • pp.139-146
    • /
    • 2010
  • It was verified that the effect of the distance between current input point and output point on direct current potential drop (DCPD) in the material with two-dimensional surface notch. If the distance between potential drop measuring points was fixed at a certain distance, the potential drop was decreased with increasing the distance between current input and output points. DCPD technique was a useful method for surface crack sizing because the potential drop was proportional to the length of notch. In this paper, we suggest a statistical model to describe the data and want to find a significant variables to effect to potential drop. We use R program to analyze the data.

Calcium Phosphate Bone Cement Based on Wet Prepared Dicalcium Phosphate

  • Chang, Myung Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.5
    • /
    • pp.480-491
    • /
    • 2018
  • Calcium phosphates (CaP) were prepared by a wet chemical method. Micro-crystalline dicalcium phosphate (DCPD) was precipitated at $37^{\circ}C$ and pH 5.0 using $Ca(OH)_2$ and $H_3PO_4$. The precipitated DCPD solution was kept at $37^{\circ}C$ for 96 h. Artificial bone cement was composed of DCPD, $Ca(H_2PO_4)_2{\cdot}H_2O$ (MCPM), and $CaSO_4{\cdot}1/2H_2O$, $H_2O$ and aqueous poly-phosphoric acid solution. The wet prepared CaP powder was used as a matrix for the bone cement recipe. With the addition of aqueous poly-phosphoric acid, the cement hardening reaction was started and the CaP bone cement blocks were fabricated for the mechanical strength measurement. For the tested blocks, the mechanical strength was measured using a universal testing machine, and the microstructure phase analysis was done by field emission scanning electron microscopy and X-ray diffraction. The cement hardening reaction occurred through the decomposition and recrystallization of MCPM and $CaSO_4{\cdot}1/2H_2O$ added on the surface of the wet prepared CaP, and this resulted in grain growth in the bone cement block.

A New Test Method to Determine the Initiation Time of Stress Corrosion Cracking

  • Bahn, Chi-Bum;Lee, Tae-Hyun;Lee, Seung-Gi;Choi, Hoi-Su;Kim, Ji-Hyun;Hwang, Il-Soon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2005.05a
    • /
    • pp.347-348
    • /
    • 2005
  • A proving ring test method equipped with DCPD was developed and applied to detect the crack initiation time in PWR primary water conditions. The specimens were exposed to the PWR primary water environment during one month. The DCPD signals were very clear but the crack initiation was not detected manly because of the low stress condition. To increase the stress condition, Ni plating will be conducted after the straining the specimens.

  • PDF