References
- W. E. Brown and L. C. Chow, "A New Calcium Phosphate Water-Setting Cement," pp. 351-79 in Cement Research Progress, Ed. by P. W. Brown, The American Ceramic Society, Ohio, 1986.
- L. C. Chow, "Development of Self-Setting Calcium Phosphate Cements," J. Ceram. Soc. Jpn., 99 [1154] 954-64 (1991). https://doi.org/10.2109/jcersj.99.954
-
M. C. Chang, "Precipitation of Calcium Phosphate at pH 5.0 for the
${\beta}$ Tri-calcium Phosphate Cement," J. Korean Ceram. Soc., 50 [4] 275-79 (2013). https://doi.org/10.4191/kcers.2013.50.4.275 -
M. C. Chang, "The Influence of Nano-TCP Powders in the
${\beta}$ -TCP - Based Artificial Bone Synthesis," Biomater. Res., 17 [3] 121-25 (2013). -
M. C. Chang, "Use of Wet Chemical Method to Prepare
${\beta}$ Tri-Calcium Phosphates Having Macro- and Nano-Crystallites for Artificial Bone," J. Korean Ceram. Soc., 53 [6] 670-75 (2016). https://doi.org/10.4191/kcers.2016.53.6.670 -
M. C. Chang and R. DeLong, "Calcium Phosphate Formation in Gelatin Matrix Using Free Ion Precursors of
$Ca^{2+}$ and Phosphate Ions," Dent. Mater., 25 [2] 261-68 (2009). https://doi.org/10.1016/j.dental.2008.07.005 - R. A. Young, "Biological Apatite vs. Hydroxyapatite at the Atomic Level," Clin. Orthop. Relat. Res., 113 249-60 (1975). https://doi.org/10.1097/00003086-197511000-00036
-
W. R. Walsha, F. Vizesia, D. Michaela, J. Aulda, A. Langdown, R. Oliver, Y. Yu, H. Irie, and W. Bruce, "
${\beta}$ -TCP Bone Graft Substitutes in a Bilateral Rabbit Tibial Defect Model," Biomaterials, 29 [3] 266-71 (2008). https://doi.org/10.1016/j.biomaterials.2007.09.035 - S. Metsger, T. D. Driskell, and J. R. Paulsrud, "Tricalcium Phosphate Ceramic - A Restorable Bone Implant: Review and Current Status," J. Am. Dent. Assoc., 105 [6] 1035-38 (1982). https://doi.org/10.14219/jada.archive.1982.0408
-
H.-B. Pan and B. W. Darvell, "Solubility of TTCP and
${\beta}$ -TCP by Solid Titration," Arch. Oral Biol., 54 [7] 671-77 (2009). https://doi.org/10.1016/j.archoralbio.2008.01.001 -
I. R. Gibson, I. Rehman, S. M. Best, and W. Bonfield, "Characterization of the Transformation from Calcium Deficient Apatite to
${\beta}$ -tricalcium Phosphate," J. Mater. Sci.: Mater. Med., 11 [12] 799-804 (2000). https://doi.org/10.1023/A:1008905613182 -
J. S. Bow, S. C. Liou, and S. Y. Chen, "Structural Characterization of Room-Temperature Synthesized Nano-Sized
${\beta}$ -tricalcium Phosphate," Biomaterials, 25 [16] 3155-61 (2004). https://doi.org/10.1016/j.biomaterials.2003.10.046 -
B. Mirhadi, B. Mehdikhani, and N. Askari, "Synthesis of Nano-sized
${\beta}$ -tricalcium Phosphate via Wet Precipitation," Process. Appl. Ceram., 5 [4] 193-98 (2011). https://doi.org/10.2298/PAC1104193M -
B. M. Fathi, A. El Yacoubi, A. Massit, and B. C. E. Idrissi, "Wet Chemical Method for Preparing High Purity
${\beta}$ and${\alpha}$ -Tricalcium Phosphate Crystalline Powders," Int. J. Sci. Eng. Res., 6 [6] 139-42 (2015). -
L. M-Alonso, M. Motisuke, J. R. Correa, R. G. Carrode guas, and L. A. dos Santos, "In situ Synchrotron X-ray Powder Diffraction Study of the Early Hydration of
${\alpha}$ -tricalcium Phosphate/Tricalcium Silicate Composite Bone Cement," Mater. Res., 18 [1] 164-69 (2015). https://doi.org/10.1590/1516-1439.302114 - L. C. Chow and E. D. Eanes, "Calcium Phosphate Cements," pp. 148-63 in Monographs Oral Science, Vol. 18, Karger, Basel, 2001.
- Sergey V. Dorozhkin, "Self-Setting Calcium Orthophosphate Formulations," J. Funct. Biomater., 4 [1] 209-311 (2013). https://doi.org/10.3390/jfb4040209
- M. Schamel, J. E. Barralet, J. Groll, and U. Gbureck, "In vitro Ion Adsorption and Cytocompatibility of Dicalcium Phosphate Ceramics," Biomater. Res., 21 [10] 1-8 (2017). https://doi.org/10.1186/s40824-016-0087-x
- K. Tsuru, A. Yoshimoto, M. Kanazawa, Y. Sugiura, Y. Nakashima, and K. Ishikawa, "Fabrication of Carbonate Apatite Block through a Dissolution-Precipitation Reaction Using Calcium Hydrogen Phosphate Dihydrate Block as a Precursor," Materials, 10 [4] 374-83 (2017). https://doi.org/10.3390/ma10040374
- M. Komath, H. K. Varma, and R. Sivakumar, "On the Development of an Apatitic Calcium Phosphate Bone Cement," Bull. Mater. Sci., 23 [2] 135-40 (2000). https://doi.org/10.1007/BF02706555
- T. Toshima, R. Hamai, M. Tafu, Y. Takemura, S. Fujita, T. Chohji, S. Tanda, S. Li, and G. W. Qin, "Morphology control of Brushite Prepared by Aqueous Solution Synthesis," J. Asian Ceram. Soc., 2 [1] 52-6 (2014). https://doi.org/10.1016/j.jascer.2014.01.004
- F. Tamimi, Z. Sheikh, and J. Barralet, "Dicalcium Phosphate Cements: Brushite and Monetite," Acta Biomater., 8 [2] 474-87 (2012). https://doi.org/10.1016/j.actbio.2011.08.005
- A. Kishida, T. Taguchi, and M. Akashi, "Novel Surface Treatment Conferring Biocompatibility: Apatite Formation on Materials for Artificial Organs Induced by Alternate Soaking Process," Jpn. J. Artif. Organs, 29 [2] 452-56 (2000).
- M. Nilsson, E. Fernandez, S. Sarda, L. Lidgren, and J. A. Planell, "Microstructure Analysis of Novel Resorbable Calcium Phosphate/Sulphate Bone Cements," Key Eng. Mater., 218-220 365-68 (2002).
- M. Nilsson, E. Fernandez, S. Sarda, L. Lidgren, and J. A. Planell, "Characterization of a Novel Calcium Phosphate/ Sulphate Bone Cement," J. Biomed. Mater. Res., 61 [4] 600-7 (2002). https://doi.org/10.1002/jbm.10268