• Title/Summary/Keyword: DC-LED

Search Result 210, Processing Time 0.023 seconds

Design of the Driver of 7W Class LED Lamps as a Substitute for Incandescent Lamps (백열전구 대체용 7w급 LED 램프의 드라이버 설계)

  • Park, Young-San;Bae, Cherl-O
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.2
    • /
    • pp.235-240
    • /
    • 2010
  • In order to substitute incandescent lamps, a power supply device for 7W class LED lamps which are environmentally friendly and energy saving is designed LED lamps consist of a multitude of chip LED connected in parallel and series. 11ms it is necessary to supply LED lamps with DC voltage and current. However, when LED lamps are in use, they are connected directly to AC 220V. This is why we need to have AC/DC, DC/DC power converters including a control system of voltage and current. For this, a transformerless and simple LED lamp driver is designed 조ich can control the current and output voltage for LED string of LED lamp.

72[W] Power LED Photovoltaic Lighting System including the Current Limiting Function (전류제한 기능을 갖는 72[W ]급 파워 LED 태양광 보안등)

  • Park, Hyo-Sik;Han, Woo-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.2999-3004
    • /
    • 2010
  • In comparison with some other light sources, LED has merits such as long lifetime, pollution free, and high energy efficiency. Lately, due to development of LED with high brightness and capacity, LED, which has been applied in display system only, has applied in the field of lighting system. As power LED for lighting system can be burned out by heat problem, the driving current of power LED has to be controlled below the designed value. In this paper, power LED photovoltaic lighting system, which has the current limitting function, has been described. After photovoltaic power is generated from PV panel. it is charged into a battery. And then, after the charged power is converted to DC24[V] through a boost DC-DC converter, it is supplied to power LED at night. It has been validated by designing and testing of 72[W] power LED lighting system, which includes a PV charger, a boost DC-DC converter and a current limiter for driving power LED.

A High Efficiency LED Driver Circuit using LLC Resonant Converter (LLC 공진형 컨버터를 이용한 고효율 조명용 LED 구동회로)

  • Shin, Dae-Seong;Jung, Young-Jin;Hong, Sung-Soo;Han, Sang-Kyu;Jang, Byung-Jun;Kim, Jong-Hae;Lee, Il-Oun;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.35-42
    • /
    • 2010
  • This paper presents the Two-stage LED Driving system using LLC resonant converter for LED lighting application. Due to the existence of the nonisolation DC/DC converter to control the LED current and the light intensity, the conventional three-stage LED Driving system has the problem of low power conversion efficiency. To solve this problem, a novel scheme without any nonisolation DC/DC converter is proposed, in which, the isolated DC/DC converter, e.g., LLC resonant converter in the paper, can perform the LED current control and stage, e.g., PFC stage and LLC stage, the efficiency can be significantly improved. Moreover, the cost and the volume of the whole LED driving system can be reduced compared to those of the conventional ones. The operational principle and the characteristics of the proposed scheme are presented. The proposed scheme is verified experimentally with a 45W output prototype LED driver.

Performance Investigation of Buck-Boost Type DC-DC Converters for LED Drive Application (LED Driver를 위한 승강압용 DC-DC 컨버터의 특성 비교)

  • Kim, Tae-Sik;Kwak, Sang-Shin;Cho, Nae-Soo;Kim, Woo-Hyun;Kwon, Woo-Hyen
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.171-173
    • /
    • 2009
  • 최근 LED 기술의 발달로 LED의 이용범위가 점차 넓어지고 있다. 이러한 LED를 구동하기 위한 시스템의 저비용 고효율을 위해서는 입력전압에 대한 출력전압의 승강압이 중요하다. 따라서 본 논문에서는 승강압이 가능한 DC-DC 컨버터인 Buck-Boost, ZETA, SEPIC 토폴로지를 적용하여 LED Lamp 구동 시스템을 구성해 본다. 위 세 가지의 컨버터는 입력전압에 대하여 출력전압의 승강압이 가능하고 입출력 전압특성이 동일하다. 그러므로 각각의 컨버터들을 이용하여 LED driving 회로를 구성하고, Pspice 시뮬레이션을 통해 나타나는 입출력 효율을 측정하여 승강압용 DC-DC 컨버터의 특성을 비교한다.

  • PDF

Design of LED Drive using MLCC Output Capacitor (MLCC 출력 콘덴서를 이용한 LED 구동드라이브 설계)

  • Han, Man-Seung;Lee, Sang-Hun;Cho, Su-Eog;Park, Sung-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.448-456
    • /
    • 2011
  • In this paper, we proposed a LED driver that allows to use a long lifetime MLCC with small voltage capacity to replace the electrolytic condenser that has been used at the output part by storing only the voltage fluctuation due to temperature variation in the output condenser. The proposed LED driver can allow to use a long lifetime MLCC with small power loss as the output condenser instead of the conventional electrolytic condenser with short lifetime because it stores only the voltage fluctuation due to the temperature variation of the LED light source in the output condenser by connecting the output condenser with the input power supply in series in the basic topology of the conventional boost DC/DC converter. In this study, we performed a simulation to verify the conventional DC/DC converter and the proposed DC/DC converter. It was shown that the DC/DC converter proposed through the experiment allows to use MLCC as the output condenser and the efficiency can be improved.

A New LED Current Balancing Scheme Using Double-Step-Down DC-DC Converter (이중강압 DC-DC 컨버터를 이용한 새로운 LED 전류 밸런싱 기법)

  • Kim, Kisu;Do, Duc Tuan;Kim, Heung-Geun;Cha, Honnyong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.10
    • /
    • pp.1474-1480
    • /
    • 2017
  • This paper presents a new LED current balancing scheme using double-step-down dc-dc converter. With the proposed structure, the two channel LED currents are automatically balanced without using any dedicated control or auxiliary circuit. In addition, switching loss of the switching devices in the proposed LED driver is lower than that of the conventional buck LED driver. To verify the operation of the proposed LED driver, a hardware prototype is built and tested with different number of LED.

DC-DC integrated LED Driver IC design with power control function (전력 제어 기능을 가진 DC-DC 내장형 LED Driver IC 설계)

  • Lee, Seung-Woo;Lee, Jung-Gi;Kim, Sun-Yeob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.702-708
    • /
    • 2020
  • Recently, as LED display systems have become larger, research on effective power control methods for the systems has been in progress. This paper proposes a power control method to minimize power loss due to the difference in LED characteristics for each channel of a backlight unit (BLU) system. The proposed LED driver IC has a power optimization function and detects the minimum headroom voltage for constant current operation of all channels and linearly controls the DC-DC converter output. Thus, it minimizes power consumption due to unnecessary additional voltage. In addition, it does not require a voltage sensing comparator or a voltage generation circuit for each channel. This has a great advantage in reducing the chip size and for stabilization when implementing an integrated circuit. In order to verify the proposed function, an IC was designed using Cadence and Synopsys' design tools, and it was fabricated with a Magnachip 0.35um 5V/40V CMOS process. The experiments confirmed that the proposed power control method controls the minimum required voltage of the BLU system.

Development of Constant Current Driving Module for High Power LED Lighting Using LLC DC-DC Transformer (LLC DC-DC 트랜스포머를 이용한 고출력 LED 조명용 정 전류 구동모듈 개발)

  • Kim, Hyung-Sik;Kim, Hee-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.8
    • /
    • pp.1130-1139
    • /
    • 2012
  • This paper proposes a LED lighting system using integrated power system composed of bridgeless PFC, LLC DC-DC transformer, and dimmable constant current LED driver module. The proposed LED lighting system features high efficiency, high power factor, and dimming capability. In order to verify the validity of the proposed system, the 2kW prototype system was built and tested. From the experimental results, it was confirmed that the maximun efficiency of 92.6% and maximum power factor of 99.7% can be achieved.

DC Leakage Current Properties Analysis of the LED Lamps of Road and Landscape Lighting (LED 가로등 및 경관조명의 직류 누전 특성 분석)

  • Kim, Hyang-Kon;Kim, Dong-Woo;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.885-891
    • /
    • 2011
  • In this paper, we studied dc leakage current properties analysis of LED lamps of road and landscape lighting when leakage current appeared in dc power line. Generally, converter of LED lighting is divides to insulated type and non-insulated type according to components. When electric leakage happened in AC power line, earth leakage breaker(ELB) senses leakage current and interrupts electric circuit. In dc power source, We need experimental verification about dc electric leakage for electricity safety. In normal wiring conditions and in the water, in case of using insulated type of converter, dc leakage current did not occur. However, in case of using non-insulated type of converter, dc leakage current occurred and passed through into the ground. We found that there is a hazard of electric shock by dc leakage current. We expect that the results of these studies would be helpful for electrical safety of LED lamps for road and landscape lighting.

Design of New LED Drive using Energy Recovery Circuit (에너지 회수 회로를 이용한 새로운 LED 구동드라이브 설계)

  • Han, Man-Seung;Lim, Sang-Kil;Park, Sung-Jun;Lee, Sang-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.9-17
    • /
    • 2011
  • The high-power LED (Light Emitting Diode) which is recently gaining popularity as a digital light source has such advantages as low power consumption, long life, fast switching speed, and high efficiency. Thus, many efforts are being made to use the high-power LEDs for general lighting. This paper proposes LED driving circuit uses a DC/DC converter that can recover energy to compensate for the current variations caused by changes in LED equivalent resistance following a temperature change instead of serial resistance. The maximum input voltage of this DC/DC converter has low voltage variations by temperature change when the rated current is formed. In order to return current to the input side, we need a high boosting at low power. Thus, to improve the low efficiency of power converter, the power converter can be configured in such a way to gather the powers of low-capacity DC/DC converters and return the total power. Experiments showed that the proposed system improved efficiency compared to the conventional LED drive using the existing DC/DC converter.