• Title/Summary/Keyword: DC-AC inverter

Search Result 458, Processing Time 0.024 seconds

A Charging Circuit for the Power Stotage of Wind Power Generation (풍력발전의 전력저장을 위한 충전회로)

  • Ko, Seok-Cheol;Kang, Hyeong-Gon;Lim, Sung-Hun;Han, Byoung-Sung;Song, Seung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.11
    • /
    • pp.635-644
    • /
    • 2002
  • Many generating units can be in parallel connection to one battery and inverter. However, one of the biggest problems we encountered is that wind speed is fluctuated sharply in accordance with the unstable weather conditions. To solve this problem, we need energy storage equipment such as storage lead-acid battery. We design a system and analyze its modeling so that it supplies a stable power to the load through DC-AC inverter part. In this paper, we applied dual step-up/down buck-boost converter and dual high-frequency half-bridge converter to the proposed system. These converters are used to store energy in the battery regardless of the change of the wind speed. The operation process of two proposed types of converters for high-power battery charging is discussed along with simulation and experimental result. We design a charging circuit which is applicable in the actual wind power generation system for 30kw and confirm the circuit's validity.

The Optimization of Current Control in DC/AC Power Converters under Digital Control with Microprocessor (마이크로프로세서에 의한 디지탈 제어방식에서 직류/교류 전력변환장치 전류제어 성능의 최적화)

  • 우명호;목형수;정승기
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.1
    • /
    • pp.61-69
    • /
    • 1998
  • In this paper, discrete current control of voltage source inverters is proposed. As a current control scheme, the constant switching frequency predictive current control is adopted and implemented with DSP microprocessor system. In particular, the proposed method is for the compensation of the control lagging due to calculation delays in the microprocessor controller. In controlling the current, the inverter output voltage saturation problem is inevitable and usually affects the current control performance. So, the saturation boundary condition of the inverter output voltage and its effects on the current controal performance of the proposed current control scheme are investigated with experiment. Finally, the proposed scheme is applied to the active power filter system and some results are described for validation.

Maximum Power Point Tracking Controller Connecting PV System to Grid

  • Ahmed G. Abo-Khalil;Lee Dong-Choon;Choi Jong-Woo;Kim Heung-Geun
    • Journal of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.226-234
    • /
    • 2006
  • Photovoltaic (PV) generators have nonlinear V-I characteristics and maximum power points which vary with illumination level and temperature. Using a maximum power point tracker (MPPT) with an intermediate converter can increase the system efficiency by matching the PV systems to the load. This paper presents a maximum power point tracker based on fuzzy logic and a control scheme for a single-phase inverter connected to the utility grid. The fuzzy logic controller (FLC) provides an adaptive nature for system performance. Also the FLC provides excellent features such as fast response, good performance and the ability to change the fuzzy parameters to improve the control system. A single-phase AC-DC inverter is used to connect the PV system to the grid utility and local loads. While a control scheme is implemented to inject the PV output power to the utility grid at unity power factor and reduced harmonic level. The simulation results have shown the effectiveness of the proposed scheme.

A Protection Circuit for the Power Supply of a Gas Discharge Lamp

  • Kim, Ho-Sung;Kim, Jong-Hyun;Baek, Ju-Won;Yoo, Dong-Wook;Jung, Hye-Man;Kim, Hee-Je
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.777-783
    • /
    • 2010
  • In order to drive gas discharge lamps, DC-AC converters with a LCC resonant tank, whose output voltage is adjusted by a variable frequency control are frequently used. However, when they are activated by varying the operating frequency, converters are frequently damaged by unstable operation, due to the rising and falling of the operating frequency near the resonant frequency. To solve this problem, a simple protection circuit for the power supply of a gas discharge lamp is proposed in this paper. This circuit senses the primary current of the main transformer. Using this protection circuit, the operating frequency of the lamp driving inverter system is kept close to and on the right side of the resonant frequency and the inverter is always operated in the ZVS condition. The resulting stable variable frequency operation allows various gas discharge lamps to be tested without the risk of damaging the main switches, because the protection circuit can protect the power MOSFETs of bridge converters from abnormal conditions. The validity and effectiveness of the proposed protection circuit are verified through the experimental results.

A Study on Load Simulator for Traction system combined testing (전동차 조합시험을 위한 부하 시뮬레이터에 관한 연구)

  • Kim, Gil-Dong;Lee, Han-Min;Oh, Seh-Chan;Pak, Sung-Hyuk;Kim, Jong-Dae
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1643-1645
    • /
    • 2005
  • A newly-built inverter has to undergo a series of stress tests in the final stage of production line. This can be achieved by connecting it to a dynamometer consisting of a three-phase machine joined by a rigid shaft to a DC load machine. The latter is controlled to create some specific load characteristic needed for the test. In this paper a test method is proposed, in which no mechanical equipment is needed. The suggested test stand consists only of a inverter to be tested and a simulator converter. Both devices are connected back- to-back on the AC-side via smoothing reactors. The simulator operates in real-time as an equivalent load circuit, so that the device under test will only notice the behaviour of a three-phase machine under consideration of the load. In odor to wove rightness of the suggested test method, the simulation and actural experiment rallied out emulation for a 2.2kW induction motor.

  • PDF

Fault detection and classification of permanent magnet synchronous machine using signal injection

  • Kim, Inhwan;Lee, Younghun;Oh, Jaewook;Kim, Namsu
    • Smart Structures and Systems
    • /
    • v.29 no.6
    • /
    • pp.785-790
    • /
    • 2022
  • Condition monitoring of permanent magnet synchronous motors (PMSMs) and detecting faults such as eccentricity and demagnetization are essential for ensuring system reliability. Motor current signal analysis is the most commonly used precursor for detecting faults in the PMSM drive system. However, the current signature responds sensitively to the load and temperature of the motor, thereby making it difficult to monitor faults in real- applications. Therefore, in this study, a condition monitoring methodology that detects motor faults, including their classification with standstill conditions, is proposed. The objective is to detect and classify faults of PMSMs by using programmable inverter without additional sensors and systems for detection. Both DC and AC were applied through the d-axis of a three-phase motor, and the change in incremental inductance was investigated to detect and classify faults. Simulation with finite element analysis and experiments were performed on PMSMs in healthy conditions as well as with eccentricity and demagnetization faults. Based on the results obtained from experiments, the proposed method was confirmed to detect and classify types of faults, including their severity.

A Study on Harmonic Correction of Air-Conditioner Power Conversion Equipment (에어컨 전력변환장치의 고조파 개선에 관한 연구)

  • Mun, Sang-Pil;Suh, Ki-Young;Lee, Hyun-Woo;Jung, Sang-Hwa
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.5
    • /
    • pp.43-50
    • /
    • 2002
  • To improve the current waveform of diode rectifiers, we propose a new operating principle for the voltage -doubler diode rectifiers. In the conventional voltage-doubler rectifier circuit, relatively large capacitors are used to boost the output voltage, while the proposed circuit uses smaller ones and a small reactor not to boost the output voltage but improve the input current waveform. A high input power factor of 97[%] and an efficiency of 98[%] are also obtained. The harmonic guide lines of proposed rectifier is no interfered with inverter switching, resulting in a simple, reliable and low-cost ac-to dc converters in comparison with the boost-type current-improving circuits.It compared conventional pulse-widthmodulated(PWM)inverter with half pulse-widthmodulated (HPWM) inverter. Proposed HPWM inverter eliminated dead-time by lowering switchingloss and holding over-shooting.

A Study on the Implementation of Inverter Systems for Regenerated Power Control (회생전력 제어용 인버터 시스템의 구현에 관한 연구)

  • 金 敬 源;徐 永 泯;洪 淳 瓚
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.205-213
    • /
    • 2002
  • This paper deals with the implementation of three-phase VSI systems which can control the power regenerated from DC bus line to AC supply. The overall system consists of the line-to-line voltage and line current sensors, an actual power calculator using d-q transformation method, a complex power controller with PI control scheme, a gating signal generator for modified q-conduction mode, a DPLL for frequency followup, and Power circuits. Control board is constructed by using a 32-bit DSP TMS32C32, two EFLDs , six ADCs, and a DAC. To verify the performance of the proposed system, we designed and constructed the propotype with the power rating of 5kVA at AC 220V. Experimental results show that the regenerated active power is well controlled to its command vague and the regenerated reactive power still remained at nearly zero through all operating modes.

An experimental performance analysis of a cold region stationary photovoltaic system

  • Choi, Wongyu;Warren, Ryan D.;Pate, Michael B.
    • Advances in Energy Research
    • /
    • v.4 no.1
    • /
    • pp.1-28
    • /
    • 2016
  • A grid-connected photovoltaic (PV) system comprised of multicrystalline silicon (mc-Si) modules was installed in a cold climate region in the U.S. This roof-mounted stationary PV system is a real-world application of PV for building energy generation in International Energy Conservation Code (IECC) Climate Zone 5 (and possibly similar climate zones such as 6, 7 and 8), and it served the purposes of research, demonstration, and education. The importance of this work is highlighted by the fact that there has been less emphasis on solar PV system in this region of the U.S. because of climate and latitude challenges. The system is equipped with an extensive data acquisition system capable of collecting performance and meteorological data while visually displaying real-time and historical data through an interactive online interface. Experimental data was collected and analyzed for the system over a one-year period with the focus of the study being on measurements of power production, energy generation, and efficiency. The annual average daily solar insolation incident upon the array was found to be $4.37kWh/m^2$. During the first year of operation, the PV system provided 5,801 kWh (1,264 kWh/kWp) of usable AC electrical energy, and it was found to operate at an annual average conversion efficiency and PR of 10.6 percent and 0.79, respectively. The annual average DC to AC conversion efficiency of the inverter was found to be 94 percent.

The Effect of Process Parameter on the Symmetry of Nugget in Micro-resistance Series Spot Welding (정밀저항시리즈 점용접에서 너깃의 대칭성에 미치는 공정변수의 영향)

  • 조상명;김송미
    • Journal of Welding and Joining
    • /
    • v.19 no.6
    • /
    • pp.622-629
    • /
    • 2001
  • The aim of this experiment is to establish the method that obtains symmetrically two nuggets in microresistance series spot welding. The sheets of austenite stainless steel STS304 applied to various electronic parts were experimented by the inverter welding power source of polarity controllable type and by the twin head for left and right electrode force to be controlled separately. The experimental results were obtained as follows : 1) When series spot welding was carried out by DC 1 pulse as welding current with same electrode force at left and right, the asymmetry of nuggets was resulted from the larger nugget of the (-) pole because of the Peltier effect. The dynamic resistance of weld spot at left and right was appeared differently according to the growth of nuggets. 2) When AC 1 cycle by welding power source of polarity controllable type was applied, the nuggets were almost symmetrically formed. 3) In a twin head, if the electrode force of (-) pole was larger than that of (+) pole, the diameters of two nuggets became to same. It was confirmed that the dynamic resistance of (-) pole was decreased to the same level as it of (+) pole. 4) Although the forces of left and right electrode were same, and only DC 1 pulse was applied, symmetric nuggets were obtained if the conductivity of (+) pole was lower than it of (-) pole.

  • PDF