• Title/Summary/Keyword: DC voltage-current characteristic

Search Result 160, Processing Time 0.027 seconds

A Study on Utility Interactive Energy System using PWM Converter (PWM 컨버터를 이용한 계통연계 에너지시스템에 관한 연구)

  • Kim, Gil-Dong;Lee, Han-Min;Hong, Yong-Ki;Kim, Dea-Gyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.288-291
    • /
    • 2007
  • Since the residential load is an AC load and the output of solar cell is a DC power, the photovoltaic system needs the DC/AC converter to utilize solar cell. In case of driving to interact with utility line, in order to operate at unity power factor, converter must provide the sinusoidal wave current and voltage with same phase of utility line. Since output of solar cell is greatly fluctuated by insolation, it is necessary that the operation of solar cell output in the range of the vicinity of maximum power point. In this paper, DC/AC converter is three phase PWM converter with smoothing reactor. And then, feedforward control used to obtain a superior characteristic for current control and digital PLL circuit used to detect the phase of utility line.

  • PDF

Temperature dependency of dc Characteristics for HEMTs (온도변화에 따른 HEMT의 DC 특성 연구)

  • 김진욱;황광철;이동균;안형근;한득영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.29-32
    • /
    • 2000
  • In this paper, an analytical model for I-V characteristics of a HEMTs is Proposed. The developed model takes into account the temperature dependence of drain current. In high-speed ICs for optical communication systems and mobile communication systems, temperature variation affects performance; for example the gain, efficiency in analog circuits and the delay time, power consumption and noise mrgin in digital circuits. To design such a circuit taking into account the temperature dependence of the current-voltage characteristic is indispensible. This model based on the analytical relation between surface carrier density and Fermi potential including temperature dependent coefficients.

  • PDF

Characteristic Analysis of Independent 3 phase BLDC Motor (독립 3상 BLDC 전동기의 특성해석에 관한 연구)

  • Jo, Kwan-Jun;Oh, Jin-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.277-284
    • /
    • 2007
  • This paper describes independent phase BLDC motor with a maximum torque among BLDC motor used for electric propulsion system Independent phase BLDC motor has characteristic that phases of stator we independent electrically. This paper is modeling two type of 3 phases BLDC motors, one has Y-connection type and the other has independent type, and it shows simulation of them, compares its characteristics. As a result of simulation, phase voltage of independent 3 phase BLDC motor is higher than Y-connection three phase BLDC motor. When the stator resistance and inductance are stable, high phase voltage causes an increase in maximum phase current and an increases in it serially causes an increase of maximum torque. It is also found that the current pulsation of independent phase BLDC motor was decreased by controlling phase current of independent BLDC motor.

Characteristics of the closed microhollow cathode discharge for DC Plasma Display Panels

  • Park, Hae-Il;Noh, Joo-Hyon;Ryu, Byung-Gil;Baik, Hong-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.105-106
    • /
    • 2000
  • The positive slope of the current-voltage characteristic at pressure up to 850 torr was obtained using the closed microhollow cathode without the individual and/or distributed ballast. This indicates that the stable parallel operation of the discharge was also achieved using the closed microhollow cathode. The parallel operation makes it possible to manufacture de plasma displays with high pressure, small discharge current, and long lifetime.

  • PDF

A Study on Optimal Current Control Method for Small BLDC Motor Drive (소형 BLDCM 드라이브의 최적 전류제어에 관한 연구)

  • Park, Chang-Seok;Jung, Tae-Uk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.4
    • /
    • pp.108-115
    • /
    • 2015
  • This paper proposed a optimal current control method to improve efficiency of BLDC motors. The aim of the proposed method is to use the maximum torque operating method by increasing the effective voltage at the maximum torque point unlike existing SPM operating method. The proposed method is based on existing IPM maximum torque operating method grafting onto a square wave operating of SPM motors. As the method of increasing the effective output voltage from inverter using the maximum torque point, the proposed method is to improve efficiency of BLDC motors using the same amount of the existing current effectively. For this method, the maximum torque point is carried out by FEA and analysis of magnetic flux vector. In this paper, the prototype of general-purpose BLDC drive is manufactured and the performance characteristic and validity are verified.

Fracture and Protection Technologies against Impulse of Power Arresters (전력용 피뢰기의 임펄스에 의한 파손과 대척 기술)

  • 한세원;조한구;김석수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.190-193
    • /
    • 2001
  • ZnO varistors have been widely used to protect power system and electronic system against overvoltages based on their excellent nonlinearity. In order to increase their protection capability, the fracture and protection technologies of arresters have to study according to their applications, namely ImA DC voltage, leakage currents, impulse residual voltages, withstanding capability to impulse surge, and energy absorption capability. ZnO varistors which have nonlinear current-voltage characteristic name a number of failure mechanism when ZnO elements absorb surge energies. Failure mode by thermal stress and Pin hole are among the most common failure mechanism at the high current surge current. In this study, the fracture mechaism of power arresters are introduced and protection technologies are researched. In particular the effect of thermal stress by surge currents to ZnO elements and methods against arc surge energy through withstand structure design of arrester are discussed.

  • PDF

A Design of Power Converter for Fuel Cell Controlled by Micro-Processor (마이크로프로세서에 의해 제어되는 연료전지용 전력변환 회로 설계)

  • Won, Chung-Yuen;Jang, Su-Jin;Lee, Won-Chul;Lee, Tae-Won;Kim, Soo-Seok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.61-68
    • /
    • 2004
  • Recently, a fuel cell is remarkable for new generation system. The fuel cell is characterized by low voltage and high current. Therefor, for connecting to general load, it needs both a step up converter and an inverter. The proposed system consists of an isolated DC-DC converter to boost the fuel cell voltage to 380[Vdc] and a PWM inverter with LC filter to convert the dc voltage to single phase 220[Vac]. Also, bi-directional DC-DC converter for fuel cell generation system is composed to improve load response characteristic. In this paper, full bridge converter and the single phase inverter are designed and installed for fuel cell. Simulation and experiment verify that fuel cell generation system could be applied for the distributed generation.

Characteristics of a 190 kVA Superconducting Fault current Limiting Element (190 kVA급 초전도한류소자의 특성)

  • Ma, Y.H.;Li, Z.Y.;Park, K.B.;Oh, I.S.;Ryu, K.Y.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.1
    • /
    • pp.37-42
    • /
    • 2007
  • We are developing a 22.9 kV/25 MVA superconducting fault current limiting(SFCL) system for a power distribution network. A Bi-2212 bulk SFCL element, which has the merits of large current capacity and high allowable electric field during fault of the power network, was selected as a candidate for our SFCL system. In this work, we experimentally investigated important characteristics of the 190 kVA Bi-2212 SFCL element in its application to the power grid e.g. DC voltage-current characteristic, AC loss, current limiting characteristic during fault, and so on. Some experimental data related to thermal and electromagnetic behaviors were also compared with the calculated ones based on numerical method. The results show that the total AC loss at rated current of the 22.9 kV/25 MVA SFCL system, consisting of one hundred thirty five 190 kVA SFCL elements, becomes likely 763 W, which is excessively large for commercialization. Numerically calculated temperature of the SFCL element in some sections is in good agreement with the measured one during fault. Local temperature distribution in the190 kVA SFCL element is greatly influenced by non-uniform critical current along the Bi-2212 bulk SFCL element, even if its non-uniformity becomes a few percentages.

Characteristic Evaluation of Medical X-Ray Using High-Voltage Generator with Inverter System (인버터방식의 고전압 발생장치를 이용한 의료용 X선 기기의 특성평가)

  • Kim, Young-Pyo;Cheon, Min-Woo;Park, Yong-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.36-41
    • /
    • 2011
  • Medical X-ray has been brought many changes according to the rapid development of high technology. Especially, for high-voltage generator which is the most important in X-ray generation the traditional way is to use high-voltage electric transformers primarily. However, since it is large and heavy and the ripple rate of DC high-voltage applied to X-ray tube is too big, it has a disadvantage of low X-ray production efficiency. To solve these problems, the studies about high-voltage power supply are now proceeding. At present, the high-voltage generator that generates high-voltage by making high frequency using inverter control circuit consisting of semiconductor device is mainly used. High-voltage generator using inverter has advantages in the diagnosis using X-ray including high performance with short-term use, miniaturization of power supply and ripple reduction. In this study, the X-ray high-voltage device with inverter type using pulse width modulation scheme to the control of tube voltage and tube current was designed and produced. For performance evaluation of produced device, the control signal analysis, irradiation dose change and beam quality depending on the load variation of tube voltage and tube current were evaluated.

Characteristic Analysis of Soft Switching Multi-Phase Boost Converter (소프트 스위칭 다상 부스트 컨버터의 특성 해석)

  • Lee, Joo-Hyuk;Kim, Jae-Hyung;Won, Chung-Yuen;Jung, Yong-Chae
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.529-531
    • /
    • 2008
  • Generation system using regenerative energy like photovoltaic, fuelcell is increased, PCS technology coming into the spotlight. The efficiency of DC-DC converter as part of the PCS is very important, multi-phase boost converter has more advantage than other topology. Input current of the multi-phase boost converter is divided into two inductor current because of parallel structure of the boost converters, thus it has features of decreasing input current ripple and output voltage ripple. Also multi-phase boost converter with soft switching can decrease switching loss using ZCS and ZVS. In this paper, simulation and experiment are performed to verify operation of the proposed converter, and efficiencies of the conventional and proposed converter are compared.

  • PDF