• Title/Summary/Keyword: DC motor speed control

Search Result 563, Processing Time 0.022 seconds

Design of DC-Motor Speed Control System with Embedded Server (임베디드 서버를 이용한 직류모터의 속도제어)

  • Jung, Gyu-Hong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1596-1601
    • /
    • 2003
  • As the internet communication is prevalent in recent years, it becomes quite possible to monitor and control some mechanical plants from the remote place through the TCP/IP communication. Such a concept is expected to be applied to many industrial systems for easy maintenance and trouble shooting as well as various kinds of expensive test equipments for sharing. In this research, remote data monitoring and speed control for a DC-motor is implemented and tested through TCP/IP communication with embedded micro-controllers. It showed the possibility of reliable remote control system design utilizing the internet communication.

  • PDF

A Study on the DC Motor Speed Control for Electric Bicycle with One-chip Microprocessor PIC using PWM (PWM 구동방식을 적용한 전기 자전거용 DC 모터의 속도 제어에 관한 연구)

  • Kim, Min;Yoon, Suk-Am;Choi, Jang-Gyun;Lim, Joong-Yeol;Yoon, Hyung-Sang;Cha, In-Su
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.143-146
    • /
    • 1999
  • A method to control the speed of DC motor with one-chip microprocessor PIC using PWM is discussed in this paper. This thesis deals with the DC motor speed control for electric bicycles which may be used as an alternative means of transformation in the future. We tried to design a stable system for controlling the speed of DC motor and materialized an electric bicycle loading this system. Now we are on the way to find out the problems this system has and work out the solutions.

  • PDF

Digital PI Control for Constant Speed Driving of Brushless DC Motor (브러시리스 직류전동기의 정속도 운전을 위한 디지털 PI제어)

  • Kim, Hyun-Soo;Baek, Soo-Hyun;Kim, Yong;Maeng, In-Jae;Kim, I1-Nam
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.379-381
    • /
    • 1999
  • This paper presents a study of the performance of a brushless DC motor (BLDCM) speed control system. Recently, most motor controls are implemented in digital electronics. Digital controllers tend to be more accurate, less susceptible to noise and more flexible in terms of programming. The system used a digital PI controller in order to implement the constant speed of Brushless DC motor. Microprocessor used in this experiment is 80c196kc. The applied motor has been constructed using a 50W, 150V, 3000rpm, four-pole motor.

  • PDF

Control of a DC motor using Neural Networks (신경 회로망을 이용한 DC 모터의 제어)

  • Lee, H.S.;Park, J.H.;Choi, Y.K.;Hwang, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.239-241
    • /
    • 1992
  • In this paper, back-propagation neural network is used for the identification and trajectory control of a DC motor. The neural network is trained to identify the unknown nonlinear dynamics of the motor and load and the trained neural network is used for speed control of the DC motor to have good performance. Simulation results show the good performance of the control system based on the neural network under arbitrarily chosen speed trajectories.

  • PDF

Real-Time Control of DC Sevo Motor with Variable Load Using PID-Learning Controller (PID 학습제어기를 이용한 가변부하 직류서보전동기의 실시간 제어)

  • Kim, Sang-Hoon;Chung, In-Suk;Kang, Young-Ho;Nam, Moon-Hyon;Kim, Lark-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.3
    • /
    • pp.107-113
    • /
    • 2001
  • This paper deals with speed control of DC servo motor using a PID controller with a gain tuning based on a Back-Propagation(BP) Learning Algorithm. Conventionally a PID controller has been used in the industrial control. But a PID controller should produce suitable parameters for each system. Also, variables of the PID controller should be changed according to environments, disturbances and loads. In this paper described by a experiment that contained a method using a PID controller with a gain tuning based on a Back-Propagation(BP) Learning Algorithm, we developed speed characteristics of a DC servo motor on variable loads. The parameters of the controller are determined by neural network performed on on-line system after training the neural network on off-line system.

  • PDF

Fuzzy PWM Speed Algorithm for BLDC Motor (BLDC 모터용 Fuzzy PWM 속도 알고리즘)

  • Shin, Dong-Ha;Han, Sang-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.3
    • /
    • pp.295-300
    • /
    • 2018
  • Conventionally, a PI control algorithm has been widely used as a speed control algorithm for BLDC motor. The PI control algorithm has a disadvantage in that is slow to reach the steady state due to the slow speed and torque response with various speed changes. Therefore, in this paper, PWM fuzzy logic control algorithm which can reach the steady state quickly by improving the response speed although there is a little overshoot is proposed. PWM reduces response speed and fuzzy logic control algorithm minimizes overshoot. The proposed PWM fuzzy logic control algorithm consists of DC chopper, PWM duty cycle regulator, and fuzzy logic controller. The performance and validity of the proposed algorithm is verified by simulation with Simulink of Matlab 2018a.

An electric scooter development using BLDC motor (BLDC 전동기를 사용한 전기 스쿠터 개발)

  • Park, Seong-Wook;Lee, Deuk-Kee
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.4
    • /
    • pp.219-221
    • /
    • 2002
  • This paper presents an electric scooter development using blushless DC motor. In recent scooters was to develop for sport leisure and short transportation. Most of scooter are used petroleum gas. This gas scooter has disadvantage to pollute the air. Some of scooters have developed by DC motor which require a brush. However brushless motors have higher maximum speed and greater capacity, save maintenance labour and produce less noise. There is also greater freedom in planing the usage of brushless motors. In this paper we develop an electric scooter driving BLDC motor for design smart system and control speed of scooter with current reference signal to apply voltage to motor by means of three phase inverter. Using accelerator device we generate current reference to control speed and send the current to a MICOM by A/D converter. This MICOM produces the voltage signal and hall sensors signal and PWM controller drive three phase inverter to minimize error between the reference and an actual current.

Optimal PAM Control for a Buck Boost DC-DC Converter with a Wide-Speed-Range of Operation for a PMSM

  • Howlader, Abdul Motin;Urasaki, Naomitsu;Senjyu, Tomonobu;Yona, Atsushi;Saber, Ahmed Yousuf
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.477-484
    • /
    • 2010
  • A pulse width modulation-voltage source inverter (PWM-VSI) is used for variable speed permanent magnet synchronous motor (PMSM) drives. The PWM-VSI fed PMSM has two major disadvantages. Firstly, the PWM-VSI DC-link voltage limits the magnitude of the PMSM terminal voltage. As a result, the motor speed is restricted. Secondly, in a low speed range, the PWM-VSI modulation index declines. This is caused by a high DC-link voltage and a low terminal voltage ratio. As a result, the distortion of the voltage command and the stator current are increased. This paper proposes an optimal pulse amplitude modulation (PAM) control which can adjust the inverter DC-link voltage by using a buck-boost DC-DC converter. At a low speed range, the proposed system can reduce the distortion of the voltage command, which improves the stator current waveform. Also, the allowable speed range is extended. In order to verify the proposed method, experimental results are provided to confirm the simulation results.

Circuit design and modeling for DC motor speed control (직류 전동기 속도제어를 위한 회로 설계 및 모델링)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.131-136
    • /
    • 2021
  • A DC motor is an important driving source used in a wide range along with an induction motor. Although the structure is complex and has disadvantages in terms of maintenance, most of the demands are given to induction motors as a power source in the industry today, but due to its excellent control performance, DC motors are constantly being used as small-sized control motors. In addition, DC motors with a structure capable of high-power and high-efficiency operation are being developed with the development of magnetic materials as a structure capable of using a permanent magnet in a armature. In addition, the configuration of the controller is simpler than that of an induction motor using an inverter, and the demand for a DC motor is still not negligible, so it is still occupied as an important power source. Considering these trends, this paper attempts to investigate the control performance of DC motors through hardware implementation such as modeling through simulation, PWM generation circuit and electric motor circuit using EPLD, and PI control using processor.

A Control Method for Power-Assist Devices using a BLDC Motor for Manual Wheelchairs

  • Kim, Dong-Youn;Kim, Yong-Hyu;Kim, Kwang-Sik;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.798-804
    • /
    • 2016
  • This paper proposes a new operation and control strategy for Power-Assisted Wheelchairs (PAW) using one brushless DC (BLDC) motor. The conventional electrical wheelchairs are too heavy and large for one person to move because they have two electric motor wheels. On the other hand, the proposed PAW system has a small volume and is easy to move due to the presence of a single wheel motor. Unlike the conventional electric wheelchairs, this structure for a PAW does not have a control joystick to reduce its weight and volume. To control the wheelchair without a joystick, a special control system and algorithm are needed for proper operation of the wheelchair. In the proposed PAW system uses only one sensor to detect the acceleration and direction of PAW's movement. By using this sensor, speed control can be achieved. With a speed control system, there are three kinds of operations that can be done on the speed of a PAW: the increment of PAW speed by summing external force, the decrement of PAW speed by subtracting external force, and emergency breaking by evaluating the time duration of external force. The validity of the proposed algorithm is verified through experimental results.