• 제목/요약/키워드: DC link voltage control

검색결과 442건 처리시간 0.024초

Design and Control Methods of Bidirectional DC-DC Converter for the Optimal DC-Link Voltage of PMSM Drive

  • Kim, Tae-Hoon;Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.1944-1953
    • /
    • 2014
  • This paper shows the design and control methods of the bidirectional DC-DC converter to generate the proper DC-link voltage of a PMSM drive. Conventionally, because the controllable power of the PWM based voltage source inverter is limited by its DC-link voltage, the DC-DC converter is used for boosted DC-link voltage if the inverter source cannot generate enough operating voltage for the PMSM drive. In this paper, to obtain more utilization of this DC-DC converter, optimal DC-link voltage control for PMSM drive will be explained. First, the process and current path of the DC-DC converter will be illustrated, and a control method of this converter for variable DC-link voltage will then be explained. Finally, an improvement analysis of the optimal DC-link voltage control method, especially on the deadtime effect, will be explained. The DC-DC converter of the proposed control method is verified by the experiments by comparing with the conventional constant voltage control method.

전력 전향보상을 통한 동적전압보상기 직류단 전압 제어의 성능 향상 (Performance Improvement of DC-link Control for a Dynamic Voltage Restorer with Power Feedforward Compensation)

  • 지균선;주성탁;이교범
    • 전기학회논문지
    • /
    • 제64권9호
    • /
    • pp.1297-1305
    • /
    • 2015
  • This paper proposes a power feedforward technique for the performance improvement of DC-link voltage control in the dynamic voltage restorer (DVR). The DC-link Voltage is able to be unstable for an instant owing to any change in the load and voltage sag. The distortion of the DC-link voltage leads to the negative influence on the performance of DVR. To mitigate the distortion of the DC-link voltage, the power feedforward component is calculated by the load power and the grid voltage, and then it is added to the reference current of the conventional DC-link voltage controller. By including output power feedforward component on the DC-link controller, the DC-link voltage can settle down more quickly than when the conventional DC-link voltage controller applied. The proposed technique was validated through the simulation and experimental results.

Adaptive DC-link Voltage Control for Shunt Active Power Filter

  • Wang, Yu;Xie, Yun-Xiang
    • Journal of Power Electronics
    • /
    • 제14권4호
    • /
    • pp.764-777
    • /
    • 2014
  • This study analyzes the mathematical relationship between DC-link voltage and system parameters for shunt active power filters (APFs). Analysis and mathematical deduction are used to determine the required minimum DC-link voltage for APF. A novel adaptive DC-link voltage controller for the three-phase four-wire shunt APF is then proposed. In this controller, the DC-link voltage reference value will be maintained at the required minimum voltage level. Therefore, power consumption and switching loss will effectively decrease. The DC-link voltage can also adaptively yield different DC-link voltage levels based on different harmonic currents and grid voltage levels and thus avoid the effects of harmonic current and grid voltage fluctuation on compensation performance. Finally, representative simulation and experimental results in a three-phase four-wire center-split shunt APF are presented to verify the validity and effectiveness of the minimum DC-link voltage design and the proposed adaptive DC-link voltage controller.

Fault Tolerant Control of DC-Link Voltage Sensor for Three-Phase AC/DC/AC PWM Converters

  • Kim, Soo-Cheol;Nguyen, Thanh Hai;Lee, Dong-Choon;Lee, Kyo-Beum;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • 제14권4호
    • /
    • pp.695-703
    • /
    • 2014
  • In this paper, a fault detection scheme for DC-link voltage sensor and its fault tolerant control strategy for three-phase AC/DC/AC PWM converters are proposed, where the Luenberger observer is applied to estimate the DC-link voltage. The Luenberger observer is based on a converter model, which is derived from the voltage equations of a grid-side converter and the power balance on a DC link. A fault of the voltage sensor is detected by comparing the measured value of the DC-link voltage with the estimated one. When a sensor fault is detected, a fault tolerant control strategy is performed, where the estimated DC-link voltage is used for the feedback control. The estimation error from the observer is about 1.5 V, which is sufficiently accurate for feedback control. In addition, it is shown that the observer performance is robust to parameter variations of the converter. The validity of the proposed method has been verified by simulation and experimental results.

DC-Link Voltage Balance Control in Three-phase Four-wire Active Power Filters

  • Wang, Yu;Guan, Yuanpeng;Xie, Yunxiang;Liu, Xiang
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1928-1938
    • /
    • 2016
  • The three-phase four-wire shunt active power filter (APF) is an effective method to solve the harmonic problem in three-phase four-wire power systems. In addition, it has two possible topologies, a four-leg inverter and a three-leg inverter with a split-capacitor. There are some studies investigating DC-link voltage control in three-phase four-wire APFs. However, when compared to the four-leg inverter topology, maintaining the balance between the DC-link upper and lower capacitor voltages becomes a unique problem in the three-leg inverter with a split-capacitor topology, and previous studies seldom pay attention to this fact. In this paper, the influence of the balance between the two DC-link voltages on the compensation performance, and the influence of the voltage balance controller on the compensation performance, are analyzed. To achieve the balance between the two DC-link capacitor voltages, and to avoid the adverse effect the voltage balance controller has on the APF compensation performance, a new DC-link voltage balance control strategy for the three-phase four-wire split-capacitor APF is proposed. Representative simulation and experimental results are presented to verify the analysis and the proposed DC-link voltage balance control strategy.

주택용 단상 ESS-PCS의 전압손실과 직류링크 맥동을 고려한 직류측 배터리 사이즈 및 제어기 설계 (Design of DC Battery Size & Controller for Household Single-Phase ESS-PCS Considering Voltage Drop and DC Link Voltage Ripple)

  • 김용중;이진성;김효성
    • 전력전자학회논문지
    • /
    • 제23권2호
    • /
    • pp.94-100
    • /
    • 2018
  • Generally, in a single-phase energy storage system (ESS) for households, AC ripple component with twice the fundamental frequency exists inevitably in the DC link voltage of single-phase PCS. In the grid-connected mode of a single-phase inverter, the AC ripple component in the DC link voltage causes low-order harmonics on grid-side current that deteriorates power quality on an AC grid. In this work, a control system adopting a feedforward controller is established to eliminate the AC ripple interference on the DC link side. Optimal battery nominal voltage design method is also proposed by considering the voltage loss and AC ripple voltage on DC link side in a single-phase ESS. Finally, the control system and battery nominal voltage design method are verified through simulations and experiments.

개선된 De-loading기법을 이용한 해상풍력 연계용 HVDC의 DC 전압의 제어방안 (DC-link Voltage Control of HVDC for Offshore Wind Farm using Improved De-loading Method)

  • 허재선;문원식;박상인;김두희;김재철
    • 전기학회논문지
    • /
    • 제64권3호
    • /
    • pp.399-404
    • /
    • 2015
  • This paper presents the DC voltage control method in DC link of High Voltage Direct Current(HVDC) for an offshore wind farm in Low Voltage Ride Through(LVRT) situation. Wind generators in an offshore wind farm are connected to onshore network via HVDC transmission. Due to LVRT control of grid side inverter in HVDC, power imbalancing in DC link is generated and this consequentially causes rising of DC voltage. A de-loading scheme is one of the method to protect the wind power system DC link capacitors from over voltage. But the flaw of this method is slow control response time and that it needs long recovery time to pre-fault condition after fault clear. Thus, this paper proposes improved de-loading method and we analyze control performance for DC voltage in LVRT control of HVDC for an offshore wind farm.

DC Link 전압 합성을 이용한 동기형 릴럭턴스 전동기 토크 제어 (Torque Control of Synchronous Reluctance Motor using DC Link voltage Synthesis)

  • 김승주;안준선;김기찬;고성철;이주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.19-21
    • /
    • 2006
  • This paper presents the control method that inverter output keeps to linear to reference voltage of Synchronous Reluctance Motor using DC Link voltage Synthesis. The Inverter output voltage cannot be displayed to linear about inverter reference voltage if Real DC Link voltage is different from DC Link voltage of PWM amplitude. Also, the overmodulation that there is linearity broken if reference voltage is out of range that inverter can output voltage. Torque ripple generates the vibration and noise of a motor. This paper proposes the control method so that torque ripple decreases and the linearity of inverter output keeps using the DC Link voltage Synthesis.

  • PDF

전원전압과 DC-link 전압 추정을 통한 3상 컨버터 센서리스 제어 (Sensorless Control of Three Phase Converter using estimated Input Phase-Voltage and DC-link Voltage)

  • 추흥석;박성준;김광태;김철우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.1233-1235
    • /
    • 2000
  • A new control method of three phase converter without measuring input phase-voltage and DC-link voltage is proposed. Input phase-voltage of these required voltages is estimated using EKF(Extended Kalman Filter) and DC-link voltage is estimated from the measured line currents and the estimated input phase-voltage. This control method is achieved without PLL(Phase Locked Loop) which senses the angle of input phase-voltage and DC-link voltage sensor. In addition, the proposed method controls high power factor and DC-link voltage utilizing the estimated phase angle. This paper describes the effectiveness of the proposed estimated algorithm through simulations.

  • PDF

전원전압과 DC-link 전압 추정에 의한 3상 컨버터 센서리스 제어 (Sensorless Control of Three Phase Converter using estimated Input Phase-Voltage and DC-link Voltage)

  • 추흥석;천창근;안진우;김철우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 전력전자학술대회 논문집
    • /
    • pp.227-230
    • /
    • 2001
  • A new control method of three phase converter without measuring input Phase-voltage and DC-link voltage is Proposed. Input Phase-voltage of these required voltages is estimated using EKF(Extended Kalman Filter) and DC-link voltage is estimated from the measured line currents and the estimated input phase-voltage. This control method is achieved without PLL(Phase Locked Loop) which senses the angle of input phase-voltage and DC-link voltage sensor. In additon, the proposed method controls high power factor and DC-link voltage utilizing the estimated phase angle. This paper describes the effectiveness of the proposed estimated algorithm through simulations.

  • PDF