• 제목/요약/키워드: DC Power-Bus

검색결과 233건 처리시간 0.022초

고성능 히스테리 제어를 이용한 고전압 DC 전력시스템을 위한 Voltage Bus Conditioner (A Voltage Bus Conditioner for a High Voltage DC Power Distribution System using High Performance Hysteresis Control)

  • 나재두
    • 전기학회논문지P
    • /
    • 제56권2호
    • /
    • pp.90-98
    • /
    • 2007
  • More and All-Electric Aircraft (AEA) carry many loads with varied functions. In particular, there may be large pulsed loads with short duty ratio, which can affect the normal operation of other loads. In this paper, a bi-directional converter with inductive storage is used as a voltage bus conditioner (VBC) to mitigate voltage transients on the bus. In addition, the constant frequency hysteresis control technique for a VBC is presented. A simple and fast prediction of the hysteresis band-width is implemented by the phase-lock loop control, keeping constant switching frequency. This technique offers the excellent dynamic response in load or parameter variation. The control performance is illustrated by simulated results with the SABER package, The proposed hysteresis control results in the shortest and the smallest excursions.

3상 인버터의 DC 링크 커패시터 전류의 센서리스 측정 (Sensorless measurement of the DC link capacitor current of three-phase inverter)

  • 수효동;정영국;임영철
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 추계학술대회 논문집
    • /
    • pp.205-206
    • /
    • 2012
  • A general method to measure the inverter DC bus capacitor current is described. It is an indirect estimated method. By measuring the input and out voltage and current can calculate DC bus capacitor current. This paper will develope the theory that describes the indirect method. It will discuss and verify the feasibility of this approach through the use of the PSIM. Using SPWM control method will be simulated and compared.

  • PDF

단전원 듀얼 인버터의 데드타임으로 인한 영상전류 억제 방법 (Suppression of Zero Sequence Current Caused by Dead-time for Dual Inverter With Single Source)

  • 윤범렬;김태형;이준희;이준석
    • 전력전자학회논문지
    • /
    • 제27권2호
    • /
    • pp.126-133
    • /
    • 2022
  • This study proposes a suppression of zero sequence current (ZSC), which is caused by zero sequence voltage (ZSV) for a dual two-level inverter with single DC bus. Large output voltages enable the dual inverter with single DC bus to improve a system efficiency compared with single inverter. However, the structure of dual inverter with single DC bus inevitably generates ZSC, which reduces the system efficiency and causes a current ripple. ZSV is also produced by dead time, and its magnitude is determined by the DC bus and current direction. This study presents a novel space vector modulation method that allows the instantaneous suppression of ZSC. Based on a condition where a switching period is twice a sampling (control) period, the proposed control method is implemented by injecting the offset voltage at the primary inverter. This offset voltage is injected in half of the switching period to suppress the ZSC. Simulation and experiments are used to compare the proposed and conventional methods to determine the ZSC suppression performance.

직류 마이크로그리드의 전력 공유 정확도 및 전압 제어 성능 향상을 위한 전압 민감도 행렬 기반의 분산 제어 방법 (A Distributed Control Method based on Voltage Sensitivity Matrix in DC Microgrids for Improvement of Power Sharing Accuracy and Voltage Regulation Performance)

  • 이기영;고병선;이재석;김래영
    • 전력전자학회논문지
    • /
    • 제23권5호
    • /
    • pp.345-351
    • /
    • 2018
  • A distributed control method is proposed to improve the power sharing performance of bidirectional distributed generators and the voltage regulation performance of a DC bus in a DC microgrid. Voltage sensitivity analysis based on power flow analysis is conducted to analyze the structural characteristics of a DC microgrid. A distributed control method using a voltage sensitivity matrix is proposed on the basis of this analysis. The proposed method uses information received through the communication system and performs the droop gain variation method and voltage shift method without additional PI controllers. This approach achieves improved power sharing and voltage regulation performance without output transient states. The proposed method is implemented through a laboratory-scaled experimental system consisting of two bidirectional distributed generators, namely, a load and a non-dispatchable distributed generator in a four-bus ring-type model. The experimental results show improved power sharing accuracy and voltage regulation performance.

SVPWM을 이용한 직류전력 회생시스템의 역률개선에 관한 연구 (A Study on the Power Factor Improvement of DC Power Regenerating Systems Using SVPWM)

  • 고영민;채수용;서영민;정대택;배영욱;홍순찬
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 하계학술대회 논문집
    • /
    • pp.196-198
    • /
    • 2007
  • In the substations for traction systems and the large-scale discharging system of secondary batteries, the voltage of DC bus line goes up by the regenerated energy and the energy is usually wasted in resistor for system stability. This paper proposes the DC power regenerating system using a three phase PWM inverter. The proposed system can regenerate the excessive DC power from DC bus line to AC supply and control the power factor of AC supply to unity. To implement unity power factor, the magnitude of the inverter output voltage should be higher than that of AC supply and therefore SVPWM technique is adopted. Computer simulations are carried out to verify the validity of the proposed system.

  • PDF

전기자동차 충전소용 양방향 DC-DC 컨버터 기능을 갖는 전압 밸런서 (A New Voltage Balancer With Bidirectional DC-DC Converter Function for EV Charging Station)

  • 남현택;김상훈;차헌녕;김흥근
    • 전력전자학회논문지
    • /
    • 제23권5호
    • /
    • pp.313-320
    • /
    • 2018
  • This study proposes a new voltage balancer with bidirectional DC-DC converter function. The proposed balancer can serve as a voltage balancer and a bidirectional DC-DC converter. Thus, the balancer can be applied to battery management systems or fast chargers in electric vehicles (EVs) charging stations while balancing bipolar DC bus voltages. The proposed system has unlimited voltage balancing range unlike the conventional voltage balancing control using a three-level DC-DC converter. A comparison of the voltage balancing range between the proposed and conventional scheme is explored to confirm this superiority. Simulation and experimental results are provided to validate the effectiveness of the proposed system.

태양광-배터리-수퍼캡을 갖는 직류 홈 그리드의 버스 전압 제어 (Bus Voltage Regulation of DC Home Grid with PV-Battery-Ultracap)

  • 헤리얀토누르;이동춘
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2019년도 전력전자학술대회
    • /
    • pp.467-468
    • /
    • 2019
  • This paper proposes an improved bus voltage regulation scheme in filter-based reference current generation of power management for DC home grid with photovoltaics (PV), battery, and ultracapacitor (ultracap) by using feedforward terms instead of the filter output to produce the ultracap reference current. Simulation results have proved the effectiveness of the proposed scheme.

  • PDF

A Smooth LVRT Control Strategy for Single-Phase Two-Stage Grid-Connected PV Inverters

  • Xiao, Furong;Dong, Lei;Khahro, Shahnawaz Farhan;Huang, Xiaojiang;Liao, Xiaozhong
    • Journal of Power Electronics
    • /
    • 제15권3호
    • /
    • pp.806-818
    • /
    • 2015
  • Based on the inherent relationship between dc-bus voltage and grid feeding active power, two dc-bus voltage regulators with different references are adopted for a grid-connected PV inverter operating in both normal grid voltage mode and low grid voltage mode. In the proposed scheme, an additional dc-bus voltage regulator paralleled with maximum power point tracking controller is used to guarantee the reliability of the low voltage ride-through (LVRT) of the inverter. Unlike conventional LVRT strategies, the proposed strategy does not require detecting grid voltage sag fault in terms of realizing LVRT. Moreover, the developed method does not have switching operations. The proposed technique can also enhance the stability of a power system in case of varying environmental conditions during a low grid voltage period. The operation principle of the presented LVRT control strategy is presented in detail, together with the design guidelines for the key parameters. Finally, a 3 kW prototype is built to validate the feasibility of the proposed LVRT strategy.

PMSM의 퍼지 로직 최적 효율 제어 (A Fuzzy Logical Optimal Efficiency Control of Permanent Magnet Synchronous Motor)

  • 주광성;이동회;안진우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.97-99
    • /
    • 2007
  • This paper presents a fuzzy logical control method to implement an on-line optimum efficiency control for Permanent Magnet Synchronous Motor. This method real-timely adjusts the output voltage of the inverter system to achieve the optimum running efficiency of the whole system. At first, the input power is calculated during the steady state in the process of efficiency optimizing. To exactly estimate the steady state of the system, this section needs check up the speed setting on timely. The second section is to calculate input power of dc-bus. The exact measurement of the voltage and current is the vital point to acquire the input power. The third section is the fuzzy logic control unit, which is the key of the whole drive system. Based on the change of input power of dc-bus and output voltage, the variable of output voltage is gained by the fuzzy logical unit. With the on-line optimizing. the whole system call fulfill the minimum input power of dc-bus on the running state. The experimental result proves that the system applied the adjustable V/f control method and the efficiency-optimizing unit possesses optimum efficiency, and it is a better choice for simple variable speed applications such as fans and pump.

  • PDF

PCB power-bus에 장하된, 결합제거 커패시터와 금속선의 상관관계적 영향 연구 (Correlated effects of decoupling capacitors and vias loaded in the PCB power-bus)

  • 강승택
    • 한국전자파학회:학술대회논문집
    • /
    • 한국전자파학회 2005년도 종합학술발표회 논문집 Vol.15 No.1
    • /
    • pp.429-432
    • /
    • 2005
  • This paper investigates how the PCB power-bus structure's characteristics are influenced by the loading of decoupling capacitors that are placed close to vias, on purpose or not. It is worthwhile to see the correlated effects of the aforementioned lumped elements in that when they inevitably share one DC power-bus they will result in positive or negative changes in the PCB EMC design. The EM fields and impedance profiles are rigously calculated on the PCB power-bus cases loaded with the above components and their effects will be given to bring better PCB EMC countermeasures.

  • PDF