• Title/Summary/Keyword: DC Motor

Search Result 1,933, Processing Time 0.023 seconds

Design of Embedded Electrical Power Control Unit for Personal Electrical Vehicle (1인승 전기차량의 임베디드 전동제어장치 설계)

  • Shin, Kyoo-Jae;Cha, Hyun-Rok
    • Journal of IKEEE
    • /
    • v.18 no.2
    • /
    • pp.282-290
    • /
    • 2014
  • This paper presents the design of embedded electrical power control unit for Personal Electrical Vehicle(PEV). The embedded unit is designed using PIC18F8720 processor, 16Mb flash ROM, 32Mb SDRAM and signal condition circuits. The proposed PEV consists of 4KW in-wheel Brushless DC Motor(BLDCM), 3 phase voltage source inverter with the $180^{\circ}$ conduction space vector PWM method, PID speed controller and the embedded control unit. The PEV has mechanical manufacture of inverse 3 wheel system, which is applied by the in-wheel BLDCM and steering mechanism with tilting function. Also, the performances of the proposed embedded electrical power control unit are verified through the lab experiment and road driving test of PEV.

Development of a Tensile Cell Stimulator to Study the Effects of Uniaxial Tensile Stress on Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells (세포 인장 자극기의 개발과 세포 인장 자극을 통한 성체 줄기세포의 골분화 유도)

  • Shin, Hyun-Jun;Lee, Woo-Teak;Park, Suk-Hoon;Lee, Sun-Hwa;Park, Jung-Ho;Yoon, Yong-San;Shin, Jennifer H.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.7
    • /
    • pp.629-636
    • /
    • 2009
  • Mechanical stimulation is known to play a vital role on the differentiation of mesenchymal stem cells (MSCs) to pre-osteoblasts. In this research, we developed a tensile cell stimulator, composed of a DC motor-driven actuator and LVDT sensor for measuring linear displacement, to study the effects of tensile stress on osteogenic differentiation of MSCs. First, we demonstrated the reliability of this device by showing the uniform strain field in the silicon substrate. Secondly, we investigated the effects of tensile stretching on osteogenic differentiation. We imposed a pre-set cyclic strain at a fixed frequency on cell monolayer cultured on a flexible silicon substrate while varying its amplitude and duration. 60 min of resting period was allowed between 30 min of cyclic stretching and this cycle is repeated up to 7 days. Under the combined stimulation with osteogenic media and mechanical stretching, the osteogenic markers such as alkaline phosphatase (ALP), osterix, and osteopontin began to get expressed as early as 4 days of stimulation, which is much shorter than what is typically required for osteogenic media induced differentiation. Moreover, different markers were induced at different magnitudes of the applied strains. Lastly, for the case of ALP, we observed the antagonistic effects of osteogenic media when combined with mechanical stretching.

Simple On-line Elimination Strategy of Dead Time and Nonlinearity in Inverter-fed IPMSM Drive Using Current Slope Information (IPMSM 드라이브에서 전류 기울기 정보를 이용한 데드타임 및 인버터 비선형성 효과의 간단한 제거 기법)

  • Park, Dong-Min;Kim, Myung-Bok;Kim, Kyeong-Hwa
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.401-408
    • /
    • 2012
  • A simple on-line elimination strategy of the dead time and inverter nonlinearity using the current slope information is presented for a PWM inverter-fed IPMSM (Interior Permanent Magnet Synchronous Motor) drive. In a PWM inverter-fed IPMSM drive, a dead time is inserted to prevent a breakdown of switching device. This distorts the inverter output voltage, resulting in a current distortion and torque ripple. In addition to the dead time, inverter nonlinearity exists in switching devices of the PWM inverter, which is generally dependent on operating conditions such as the temperature, DC link voltage, and current. The proposed scheme is based on the fact that the d-axis current ripple is mainly caused by the dead time and inverter nonlinearity. To eliminate such an influence, the current slope information is determined. The obtained current slope information is processed by the PI controller to estimate the disturbance caused by the dead time and inverter nonlinearity. The overall system is implemented using DSP TMS320F28335 and the validity of the proposed algorithm is verified through the simulation and experiments. Without requiring any additional hardware, the proposed scheme can effectively eliminate the dead time and inverter nonlinearity even in the presence of the parameter uncertainty.

A Study on the Reversible SCR Servo Amplifier (정역전이 가능한 SCR 서보증폭기에 관한 연구)

  • Ahn, B. W.;Park, S. K.
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.2
    • /
    • pp.190-198
    • /
    • 1995
  • Many industrial servo amplifiers employ power transister as output device. Thyristor converters are not adopted to drive servo motor, although thyristor is superior to power TR in power rating, noise immunity, price, and size. The reason is, thyristor has no ability of self turn - off. Here in this paper line commutation, in which thyristor is turned off naturally since cathode voltage is higher than anode as time goes by, is employed to turn on thyristor with a delicate sequence. We developed thyristor servo amplifier which does not cause any damage on thyristor because it is designed to prevent triggering the two SCRs in the same arm simultaneously. And it was made clearly how to trigger SCR without any power line shorting and also harmonic analysis is carried out with the aid of FFT analyzer and proved that it can be used even severe reactive load. The designed circuit operated as a good DC amplifier in conventinal servomotor and the results can be use as a position control system application.

  • PDF

Anti-adipogenic Effects of Vibration with Varied Frequencies on 3T3-L1 Preadipocytes (3T3-L1 지방전구세포에 대한 다양한 주파수 진동의 지방 생성 억제 효과)

  • Lee, Yeong Hun;Lee, Seok-Ho;Jung, Haebin;Jung, Yong Chan;Kim, Min Hwan;Lee, Eun Mi;Kim, Chi Hyun
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.18-24
    • /
    • 2021
  • Vibration is a mechanical cue that can be applied to adipose tissues for the purpose of treating obesity. However, the exact correlation between vibration and other anti-adipogenic pathways, such as development of cytoskeleton and apoptosis, remains unknown. The objective of this study was to investigate the unknown anti-adipogenic effects of vibration with varied frequencies on preadipocytes. 3T3-L1 preadipocytes were cultured in Dulbecco's modified Eagle's medium (DMEM) containing 5% calf serum at 37 ℃ with 5% CO2 in a humidified incubator. Vibration was generated using Arduino Uno microcontroller and vibration motor module with 1 V DC, and applied to preadipocytes for 3 days. Frequency conditions were set to 20, 55, and 90 Hz. Then, the expressions of p38 pathway, ROCK-1, α-actinin, Bax, Bcl-2, caspase-9, 8, and 3 were analyzed with western blot. As a result, p38 pathway was inhibited in 55 and 90 Hz while ROCK-1 and α-actinin were expressed in 20 Hz. Caspase-3, a terminal apoptotic factor, was activated in 20 Hz via extrinsic pathway rather than intrinsic pathway. Results suggest that various frequencies of vibration can inhibit adipogenesis via different pathways which sheds light on future mechanotransduction applications of vibration for the treatment of obesity.

A 12b 200KHz 0.52mA $0.47mm^2$ Algorithmic A/D Converter for MEMS Applications (마이크로 전자 기계 시스템 응용을 위한 12비트 200KHz 0.52mA $0.47mm^2$ 알고리즈믹 A/D 변환기)

  • Kim, Young-Ju;Chae, Hee-Sung;Koo, Yong-Seo;Lim, Shin-Il;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.48-57
    • /
    • 2006
  • This work describes a 12b 200KHz 0.52mA $0.47mm^2$ algorithmic ADC for sensor applications such as motor controls, 3-phase power controls, and CMOS image sensors simultaneously requiring ultra-low power and small size. The proposed ADC is based on the conventional algorithmic architecture with recycling techniques to optimize sampling rate, resolution, chip area, and power consumption. The input SHA with eight input channels for high integration employs a folded-cascode architecture to achieve a required DC gain and a sufficient phase margin. A signal insensitive 3-D fully symmetrical layout with critical signal lines shielded reduces the capacitor and device mismatch of the MDAC. The improved switched bias power-reduction techniques reduce the power consumption of analog amplifiers. Current and voltage references are integrated on the chip with optional off-chip voltage references for low glitch noise. The employed down-sampling clock signal selects the sampling rate of 200KS/s or 10KS/s with a reduced power depending on applications. The prototype ADC in a 0.18um n-well 1P6M CMOS technology demonstrates the measured DNL and INL within 0.76LSB and 2.47LSB. The ADC shows a maximum SNDR and SFDR of 55dB and 70dB at all sampling frequencies up to 200KS/s, respectively. The active die area is $0.47mm^2$ and the chip consumes 0.94mW at 200KS/s and 0.63mW at 10KS/s at a 1.8V supply.

Performance Evaluation of Backwash Hydrodynamic Separator Filter for Treatment of Micro Particles (역세척 Hydrodynamic Separator Filter를 이용한 미세입자 제거 특성 분석)

  • Lee, Jun-Ho;Bang, Ki-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.10
    • /
    • pp.694-701
    • /
    • 2012
  • The main purpose of this study is to evaluate of backwash system of hydrodynamic separator filter (HSF) with solar powered submerged pumps. It consists of a photovoltaic solar array, control electronics, battery, and two submersible pump powered by a 12 voltage DC motor. The laboratory scale study on treatable potential of micro particles using backwash HSF that was a combined with perlite filter cartridge and backwash nozzles. Since it was not easy to use actual storm water in the scaled-down hydraulic model investigations, it was necessary to reproduce ranges of particle sizes with synthetic materials. The synthesized storm runoff was made with water and addition of particles; ion exchange resin partices, silica gel particles, and commercial area manhole sediment particles. HSF was made of acryl resin with 250 mm of diameter filter chamber and overall height of 800 mm. Four case test were performed with different backwashing conditions and determined the SS removal efficiency with various surface loading rates. The operated range of surface loading rate was about 308~$1,250m^3/m^2/day$. It was found that SS removal efficiency of HSF using two submersible pumps improved by about 18% compared with HSF without backwash. Nonpoint control devices with solar water pumping systems would be useful for backwashing the filter in areas with not suppling electricity and reduce filter media exchange cost.

A Study on the Remote Control System for Outboard Engine (선외기 원격제어시스템에 관한 연구)

  • An, Byeong-Won;Jeong, Gap-Dong;Kim, Hyeon-Su;Bae, Cheol-Oh
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.71-74
    • /
    • 2006
  • Currently offshore fisheries are one of shrinking industries and fishermen are getting older. Moreover it is difficult to work fisheries for decreasing fishermen as the time goes. Two people per a boat work together at least for proper fisheries. If the unskilled fisherman boards on boat, it will make some troubles to speak each other and diminish the efficiency of working because one person should control the boat. So it need to study the remote control system for leasure and outboard engine that can control and work at the same time. The remote control system is consisted of engine revolution, steering gear and forward reverse neutral gear controls. These three controls are made by position and speed control using DC motor, and microprocessor is used to communicate and control the engine speed This system can be controled and worked alone and we tested the system at sea and confirmed that the system works properly.

  • PDF

Construction of Current Sensor Using Hall Sensor and Magnetic Core for the Electric and Hybrid Vehicle (홀소자와 자기코어를 이용한 하이브리드 및 전기자동차용 전류센서 제작)

  • Yeon, Kyoheum;Kim, Sidong;Son, Derac
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.2
    • /
    • pp.49-53
    • /
    • 2013
  • A current sensor is one of important component which is used for the electrical current measurement during charge and discharge of the battery, and monitoring system of the motor controller in the electric and hybrid vehicle. In this study, we have developed an open loop type current sensor using GaAs Hall sensor and magnetic core has an air gap. The Hall sensor detect magnetic field produced by the current to be measured. The 3 mm air gap core was made by HGO electrical steel sheets after slitting, winding, annealing, molding, and cutting. Developed current sensor shows 0.03 % linearity within DC current range from -400 A to +400 A. Operating temperature range was extended to the range of $-40{\sim}105^{\circ}C$ using temperature compensating electronic circuit. To Improve frequency bandwidth limit due to the air flux of PCB (Printed Circuit Board) and Hall sensor, We employed an air flux compensating loop near Hall sensor or on PCB. Frequency bandwidth of the sensor was 100 kHz when we applied sine wave current of $40A{\cdot}turn$ in the frequency range from 100 Hz to 100 kHz. For the dynamic response time measurement, 5 kHz square wave current of $40A{\cdot}turn$ was applied to the sensor. Response time was calculated time reach to 90 % of saturation value and smaller than $2{\mu}s$.

The Effect of Transcranial Direct Current Stimulation over the Primary Somatosensory Cortex in Patients with Chronic Stroke on Somatosensory and Upper Limb Function for Improving Life Care (만성 뇌졸중 환자를 대상으로 한 일차 체성 감각 피질을 자극한 경두개 직류 전류 자극이 라이프 케어 증진을 위한 체성감각과 상지기능에 미치는 영향)

  • Kim, Sun-Ho
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.6
    • /
    • pp.269-277
    • /
    • 2020
  • The purpose of this study is to investigate the recovery of sensation and the restoration of upper limb function according to transcranial direct current stimulation over the primary somatosensory cortex in patients with chronic stroke with sensory deficit. 20 patients with chronic stroke divided into 10 experimental groups and 10 control groups. Patients received transcranial direct current stimulations over the primary somatosensory cortex on the side of the stroke lesion, and The control group applied sham tDCS to the same location. Intervention was conducted 5 times a week, 20 minutes per session for a total of 2 weeks. Assessment was performed using the Erasmus MC modifications to the Nottingham Sensory Assessment(EmNSA), Semmes-Weinstein monofilament examination(SWME) for somatosensory, and Fugle-Meyer Assessment(FMA), Motor Activity Log(MAL), and accelerometer for upper extremity function. Assessment was conducted before and after the intervention. As a result of the study, the experimental group showed a significant improvement in the overall tactile sense, proprioception, cortical sense, and perception sensitivity than the control group, and showed a statistically significant difference in the usage amount of the upper limb. Based on the results of this study, it is thought that the possibility of effective clinical application of transcranial direct current stimulation for recovery of somatosensory and upper extremity function is thought to be increased.