• Title/Summary/Keyword: DC Converter

Search Result 3,437, Processing Time 0.031 seconds

High Repetitive Pulsed Power Supply Based on Semi-Conductor Switches (반도체 스위치 기반 고반복 펄스전원)

  • Jang, S.R.;Ahn, S.H.;Ryoo, H.J.;Kim, J.S.;Rim, G.H.
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1023_1024
    • /
    • 2009
  • In this paper, a novel 10kV, 50A, 50kHz pulsed power supply based on IGBT stacks is proposed. Proposed scheme consists of series connected 12 IGBT to generate maximum 10kV output pulse and 10kW full bridge phase-shifted zero voltage switching converter to charge DC capacitor voltage. Each IGBTs are sustain the 830V of capacitor voltage at turn off interval. By turn on the each IGBT for the same time it gives the path for the series connection of charged capacitor. From above turn on and off procedure, high voltage repetitive pulse is applied to the load. The synchronization of gating signal is important of series operation of IGBTs. For gating signal synchronization, specially designed gate power circuit using full bridge inverter and pulse transformer is developed to generate IGBT gating signal.

  • PDF

High-Performance Voltage Controller Design Based on Capacitor Current Control Model for Stand-alone Inverters

  • Byen, Byeng-Joo;Choe, Jung-Muk;Choe, Gyu-Ha
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1635-1645
    • /
    • 2015
  • This study proposes high-performance voltage controller design that employs a capacitor current control model for single-phase stand-alone inverters. The single-phase stand-alone inverter is analyzed via modeling, which is then used to design the controller. A design methodology is proposed to maximize the bandwidth of the feedback controller. Subsequently, to compensate for the problems caused by the bandwidth limitations of the controller, an error transfer function that includes the feedback controller is derived, and the stability of the repetitive control scheme is evaluated using the error transfer function. The digital repetitive controller is then implemented. The simulation and experimental results show that the performance of the proposed controller is high in a 1.5 kW single-phase stand-alone inverter prototype.

Power Demand and Total Harmonic Distortion Analysis for an EV Charging Station Concept Utilizing a Battery Energy Storage System

  • Kim, Kisuk;Song, Chong Suk;Byeon, Gilsung;Jung, Hosung;Kim, Hyungchul;Jang, Gilsoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1234-1242
    • /
    • 2013
  • To verify the effectiveness of the proposed system, the charges in power demand are analyzed for an AC and DC distribution system for the existing V2G concept and electric vehicle charging stations connected to a Battery Energy Storage System. In addition, since many power-converter-based chargers are operated simultaneously in an EV charging station, the change in the system harmonics when several EV chargers are connected at a single point is analyzed through simulations.

Development of Motor Drives for Machine Tools (공작기계용 모터 드라이브 개발사례)

  • 임형빈;노철원;최종률
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1009-1012
    • /
    • 1995
  • This paper presents an example of the development of motor drives for machine tools. Machine tools need motor drives with high control precision and performance. We developed a motor drive system that meets these requirements. The converter, the one component of drive system, adopts modular structure and high DC-link voltage. The drive which consists rest part of drive system is developed based on TMS320C32 DSP and state-of-the-art circuit technology. In this paper each developed parts are described in terms of its structure, specification and features.

  • PDF

A New Protection Strategy of Impressed Current Cathodic Protection for Ship

  • Oh, Jin-Seok;Kim, Jong-Do
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.592-596
    • /
    • 2004
  • Corrosion is never avoided in the use of materials with various environments. The underwater hull is normally protected against rusting by several coatings of anti-corrosive paint. The purpose of ICCP(Impressed Current Cathodic protection) system is to eliminate the rusting or corrosion, which occurs on metal immersed in seawater. The anode of ICCP system is controlled by an external DC source with converter. The function of anode is to conduct the protective current into seawater. The proposed algorithm includes the harmonic suppression control strategy and the optimum protection strategy and has tried to test the requirement current density for protection, the influence of voltage, the protection potential. This paper was studied the variation of potential and current density with environment factors, time and velocity, and the experimental results will be explained.

A Study on Comparison of Two phase SRMs (2상 SRM의 비교에 관한 연구)

  • Oh, Seok-Gyu;Lee, Chee-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.1
    • /
    • pp.59-63
    • /
    • 2011
  • In small-power applications, variable-speed motors having high efficiency and controllability become more dominant than brushed DC motors. BLDC motors with permanent magnets in the rotor and SRMs directed by reluctance torque due to no permanent magnets have been strongly studied as a candidate. Compared to the BLDC motors, SRMs are more suitable for low-cost applications since the magnetic structure is simple, mechanically robust, and cheap due to no additional excitation in the rotor such as copper wire, aluminum, and permanent magnets. In addition, relatively small number of phases in single and two-phase SRMs allows more cost savings with regards to material in the motor and switching devices in the converter. In this paper, several 2 phase SRMs are compared to a 3 phase 6/4 SRM in terms of flux distribution in key parts of the motors.

Design of a High Stable Measuring Circuit for Radioactive Pulses (방사선 펄스의 고안정 계측회로 설계)

  • 송재용;한주섭;천상규;길경석
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.577-580
    • /
    • 2000
  • The aim of this paper is to develop a high stable measuring device for radioactive pulses. The device consists of a high voltage supply unit using a fly-back converter principle, and a pulse detection unit for gamma-rays and neutrons. The high voltage supply unit designed can generate DC voltage up to 1,500v at 5V-input, and have a series voltage regulator to maintain the output voltage constantly, resulting in less than 1.63% of voltage regulation. The pulse detection parts consists of an active integrator, a pole-zero circuit, and a 3-stage amplifier of 60 dB, and its frequency bandwidth is from 37 Hz to 300 kHz. From the experimental results, it is confirmed that the measuring device can count at least 10,000 pulses in a second.

  • PDF

Operation system of Switched Reluctance Motor for Radiator Cooling Fan (Radiator cooling fan용 스위치드 릴럭턴스 전동기의 구동 시스템)

  • Kim Young-Ran;Yoon Yong-Ho;Lee Sang-Suck;Jung Dong-Hyo;Won Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.949-953
    • /
    • 2004
  • In automobile, the introduction of electronically commutated motors has been accompanied by a proliferation of electronic devices. With this proliferation of electronic devices, an emphasis has been placed on EMC issues. This paper is proposed to use SRM as a radiator cooling fan in automotive applications. To drive SRM, Energy efficient C-dump converter is applied. It is verified more efficient than other converters through simulation and experiments. And also SRM is valid automotive applications that have strict EMC standards. It is compared SRM with BLDC and DC motor by experiments.

  • PDF

Control Strategy of MMC-HVDC under Unbalanced Grid Voltage Conditions

  • Zhang, Jianpo;Zhao, Chengyong
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1499-1507
    • /
    • 2015
  • High voltage direct current transmission based on modular multilevel converter (MMC-HVDC) is one of the most promising power transmission technologies. In this study, the mathematical characteristics of MMC-HVDC are analyzed in a synchronous rotational reference frame. A hybrid current vector controller based on proportional integer plus resonant is used to uniformly control the DC and double-base frequency AC currents under unbalanced grid voltage conditions. A corresponding voltage dependent current order limiter is then designed to solve the overcurrent problems that may occur. Moreover, the circulating current sequence components are thoroughly examined and controlled using a developed circulating current suppressor. Simulation results verify the correctness and effectiveness of the proposed control schemes.

Modeling and Filter Design through Analysis of Conducted EMI in Switching Power Converters

  • Vimala, R.;Baskaran, K.;Aravind Britto, K.R.
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.632-642
    • /
    • 2012
  • This paper presents a filter analysis of conducted Electro-Magnetic Interference (EMI) in switching power converters (SPC) based on noise impedances. The EMI characteristics of SPC can be analytically deduced from a circuit theoretical viewpoint. The analytical noise model is investigated to get a full understanding of the EMI mechanism. It is shown that with suitable and justified model, filters pertinent to EMI noise is investigated. The EMI noise is identified by time domain measurements associated with an isolated half-bridge ac-dc converter. Practical filters like LC filter, ${\pi}$ filter and complete EMI filters are investigated. The proposed analysis and results can provide a guideline for improving the effectiveness of filtering schemes in SPC. Experimental results are also included to verify the validity of the proposed method. The results obtained satisfy the Federal Communications Commission (FCC) class A and class B regulations.