• 제목/요약/키워드: DC Circuit

검색결과 2,003건 처리시간 0.027초

개선된 자기소호회로와 아크전압 억제회로를 사용한 유도성 부하의 직류차단 특성 실험 (Experiment on DC Circuit Breaker for Inductive Load by Improved Magnetic Arc-extinguisher and Arc-Attenuation Circuit)

  • 이성민;김효성
    • 전력전자학회논문지
    • /
    • 제17권6호
    • /
    • pp.495-499
    • /
    • 2012
  • Recently, DC distribution systems become hot issues since DC type loads increase rapidly according to the expansion of IT equipment such as computers, servers, and digital devices; DC type loads will cover 50% for all electricity loads in 2020 which was mere 10% in 2000. DC distribution systems are also accelerated by the expansion of renewable power systems since they are easy to be interfaced with DC grids rather than AC grids. However, removing the fault current in DC grids is comparably difficult since the current in DC grids has non zero-crossing point like in AC grids. Thus, developing dedicated DC circuit breakers for DC grids is necessary to get safety for human and electrical facilities. Magnet arc extinguishing method is proper to small size DC circuit breakers. However, simple Magnet arc extinguishing method is not enough to break inductive fault currents. This paper proposed a novel DC circuit breaker against inductive fault current defined by IEEE C37.14-2004 Standard for Low-Voltage DC Power Circuit Breakers Used in Enclosures. The performance of the proposed DC circuit breaker was verified by an experimental circuit breaker test system built in this research.

다중공진회로를 이용한 고효율 DC-DC 컨버터 (High-Efficiency DC-DC Converter using the Multi-Resonant-Circuit)

  • 정강률
    • 전기전자학회논문지
    • /
    • 제25권1호
    • /
    • pp.218-228
    • /
    • 2021
  • 본 논문에서는 다중공진회로를 이용한 고효율 DC-DC 컨버터를 제안한다. 제안한 컨버터는 하프브리지 전력구조이며 컨버터의 고효율화를 위해 2개의 인덕터(LL)와 1개의 커패시터(C)로 구성된 다중공진회로를 이용한다. 이 다중공진회로는 동작모드에 따라, 각각의 공진주파수를 가진 직렬회로 형태의 공진회로를 각각 형성한다. 본 논문에서는 먼저, 동작모드와 정상상태 기본파 근사 모델링에 의해 제안한 컨버터의 동작원리를 설명한다. 그다음 이에 근거하여 제안한 컨버터의 설계예시를 보인다. 그리고 설계된 회로 파라미터에 의해 제작된 프로토타입 컨버터의 실험결과를 통하여 제안한 컨버터의 고효율 DC-DC 전력변환 동작특성을 입증한다.

DC Superconducting fault current limiter characteristic test with a DC circuit breaker

  • So, Jooyeong;Choi, Kyeongdal;Lee, Ji-kwang;Kim, Woo-Seok
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제23권2호
    • /
    • pp.19-23
    • /
    • 2021
  • We have studied the breaking system that combines a resistive superconducting fault current limiter (SFCL) and a DC circuit breaker for DC fault current. To verify the design of the 15 kV DC SFCL, which was driven from the previous work, a 500 V DC system was built and a scale-down SFCL were manufactured. The manufactured SFCL module was designed as a bifilar coil which is a structure that minimizes inductive reactance. The manufactured SFCL module has been experiment to verify characteristics of the current-limiting performance in the DC 500 V system. Also, the manufactured FCL module was combined with the DC circuit breaker to be experimented to analyze the breaking performance. As a result of the experiment, when SFCL was combined to the DC circuit breaker, the energy dissipation received by the DC circuit breaker was reduced by up to 84% compared to when the DC circuit breaker operates alone. We are preparing methods and experiments for the optimal method for much higher performance as a future work.

A New Reclosing and Re-breaking DC Thyristor Circuit Breaker for DC Distribution Applications

  • Kim, Jin-Young;Choi, Seung-Soo;Kim, In-Dong
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.272-281
    • /
    • 2017
  • The DC circuit breaker is essential for supplying stable DC power with the advent of DC transmission/distribution and sensitive loads. Compared with mechanical circuit breakers, which must interrupt a very large fault current due to their slow breaking capability, a solid-state circuit breaker (SSCB) can quickly break a fault current almost within 1 [ms]. Thus, it can reduce the damage of an accident a lot more than mechanical circuit breakers. However, previous DC SSCBs cannot perform the operating duty, and are not economical because many SCR are required. Therefore, this paper proposes a new DC SSCB suitable for DC grids. It has a low semiconductor conduction loss, quick reclosing and rebreaking capabilities. As a result, it can perform the operating duties of reclosing and rebreaking. The proposed DC SSCB is designed and implemented so that it is suitable for home dc distribution at a rated power of 5 [kW] and a voltage of 380 [V]. The operating characteristics are confirmed by simulation and experimental results. In addition, this paper suggests design guidelines so that it can be applied to other DC grids. It is anticipated that the proposed DC SSCB may be utilized to design and realize many DC grid systems.

DC Grid를 위한 새로운 구조의 DC Solid-State Circuit Breaker (A Novel DC Solid-State Circuit Breaker for DC Grid)

  • 김진영;김인동;노의철
    • 전력전자학회논문지
    • /
    • 제17권4호
    • /
    • pp.368-376
    • /
    • 2012
  • According to developed distributed generators, Solid State Circuit Breaker(SSCB) is essential for high power quality of DC Grid. In this paper, a simple and new structure of DC SSCB with a fast circuit breaker and fault current limiter is proposed. It can help to choice low specification of elements because of the limiting of fault current and achieve economic efficiency for minimizing auxiliary SCRs. Also all of SCRs have little switching loss because they operate under ZVS and ZCS. Through simulations and experiments of short-circuit fault, the performance characteristic of proposed circuit is verified and a guideline is so suggested that the DC SSCB is applied for a different DC grid using formulas.

충전 동작이 용이한 간단한 구조의 DC 반도체 차단기 (A Simple-Structured DC Solid-State Circuit Breaker with Easy Charging Capability)

  • 김진영;김인동
    • 전기학회논문지
    • /
    • 제66권11호
    • /
    • pp.1575-1583
    • /
    • 2017
  • With the development of DC distribution, DC circuit breaker is required to ensure the stability of the DC grid. Unlike a mechanical circuit breaker that blocks after several tens of milliseconds, a DC SSCB(Solid-State Circuit Breaker) can break the fault well within 1 [ms], so it can prevent the damage of accident. However, the previous DC SSCB requires a lot of switching elements for charging commutation capacitors, and the control is complicated. Therefore, this paper proposes a new DC SSCB suitable for DC grid. The proposed DC SSCB is simple to control for charging commutation capacitors, and it can perform the rapid breaking and operating duty of reclosing and rebreaking. The proposed DC SSCB was designed to 380 [V] and 5 [kW] class which is suitable for residential DC distribution, and the operating characteristics of the proposed DC SSCB were verified by simulations and experiments. It is anticipated that the proposed DC SSCB may be utilized to design and realize DC grid system.

자기적 아크소호 기법을 이용한 직류 차단기 개발 (Development of DC Circuit Breaker using Magnet Arc Extinguisher)

  • 이성민;김효성
    • 전력전자학회논문지
    • /
    • 제17권1호
    • /
    • pp.21-26
    • /
    • 2012
  • In recent years, DC distribution systems are becoming hot issue due to the increase in digital loads and DC generation systems according to the expansion of renewable energy technologies. However, removing the fault current in DC grids is comparably difficult since the current in DC grids has no zero-crossing point like in AC grids. Thus, developing dedicated DC circuit breakers for DC grids is necessary to get safety for people and electrical facilities. This paper proposes magnet arc extinguishing method to develop a 300[$V_{DC}$]/10[A] DC circuit breaker. The performance of the proposed DC circuit breaker was verified by an experimental circuit breaker test system built in this research.

Interruption analysis of the SFCL-combined DC circuit breaker system using current-limiting technology

  • Kim, Jun-Beom;Jeong, In-Sung;Choi, Hye-Won;Choi, Hyo-Sang
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제18권4호
    • /
    • pp.30-34
    • /
    • 2016
  • In this study, a SFCL-combined DC circuit breaker system was proposed by applying the current-limiting technology for DC circuit breaking. The SFCL-combined circuit breaker system consists of a mechanical DC circuit breaker combined with superconductors. To ensure the reliable structure and operation of the SFCL-combined circuit breaker system, a simulation grid was designed using the EMTDC/PSCAD program, and simulation was conducted. The results showed that the SFCL-combined DC circuit breaker system with superconductors limited the maximum fault current by 37%. In addition, the burden on the DC circuit breaker was decreased by 87%.

DC/SFQ-JTL-SFQ/DC 회로의 시뮬레이션 및 작동 (Simulation and Operation of DC/SFQ-JTL-SFQ/DC Circuit)

  • 박종혁;정구락;임해용;강준희;한택상
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제4권1호
    • /
    • pp.17-20
    • /
    • 2002
  • A complex single flux quantum(SFQ) circuit could be made up of various elementary cells such as JTL(Josephson transmission line), Splitter, XOR, DC/SFQ, SFQ/DC, T flip-flop, ‥‥, etc. In this work, we have designed and simulated a SFQ circuit, which consists of DC/SFQ, JTL and SFQ/DC, based on Nb/AlO$_{x}$Nb Josephson junction technology From the simulation, we could obtain the margins for various circuit parameters. And also we have successfully operated the circuit, which was fabricated with the same design, up to the input signal frequency of about 20 GHz.z.

PCS 단말기용 DC/DC 컨버터의 회로설계 및 시뮬레이션 (Design and Simulation of DC/DC Converter for PCS Handset)

  • 김동욱;조신희;김남영;장동석;구기덕
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 추계종합학술대회 논문집
    • /
    • pp.739-742
    • /
    • 1999
  • This study is to increase capability of the DC/DC converter (for PCS) in miniaturizing, stabilizing by locating an inductor with the structure of multi layer on to the glass/ceramic circuit board. When the DC/DC converter is stimulated. the characteristic operation of PWM switching circuit, losses. output power to input power, stability, efficiency and interfaces inside of control circuit and convener circuit are to be distinguished. The process would make it able to develop the techniques of designing and manufacturing of the converter of next generation.

  • PDF