• 제목/요약/키워드: DC/DC buck converter

검색결과 389건 처리시간 0.031초

THE GRAPHICAL D-Q TRANSFORMATION OF GENERAL POWER SWITCHING CONVERTERS

  • Rim, Chun-T.;Hu, Dong-Y.;Cho, Gyu-H.
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 추계학술대회 논문집 학회본부
    • /
    • pp.388-393
    • /
    • 1988
  • New circuit D-Q transformation concept is introduced to analyze AC converters such as inverters, rectifiers and cyclo-converters with ease. The equivalent linear time invariant circuit is obtained by substituting switches with equivalent turn-ratio variable transformers and changing balanced AC reactors into equivalent DC reactors combined by gyrators. This circuit enables us to utilize the powerful linear system analysis techniques such as Laplace transform otherwise which could not be applied to the time varying switching systems. Direct substitution of switches of DC converters with transformers is shown as a preliminary. Then the modeling procedure is shown for a controlled rectifier-inverter circuit. Finally an analysis example is proposed for a buck-boost inverter and the result is compared with the conventional approach. This approach is applicable to all AC converter families to determine the AC transfer functions and the DC operating points. It is identified that the switching systems are equivalent to the RLC filter circuits with transformers and gyrators.

  • PDF

Development of High-Efficiency Low-Cost Drive System of Small-Size Electric Vehicles

  • Duong, Thuy-Lien;Tran, Thanh-Vu;Chun, Tae-Won;Lee, Hong-Hee;Kim, Heung-Geun
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권2호
    • /
    • pp.105-110
    • /
    • 2012
  • This paper designs the high-efficiency and the low-cost drive system of the smallsize electric vehicles (EVs). The power circuit for driving the dc motor is designed by considering both the cost and efficiency. In order to reduce the conduction loss of MOTFET and diode for controlling an armature voltage, some MOSFETs and diodes at the armature are in parallel connection. An operating sequence for both the field current and the armature voltage according to the accelerator pedal angle is suggested for changing smoothly the rotating direction of dc motor. Through the simulation studies, the performances of the proposed methods are verified.

태양광의 세기와 셀 온도가 최대전력 추종을 하는 태양광 발전의 동특성에 미치는 영향 분석 (Analysis of the Effects of the Irradiation and Cell-Temperature on the Dynamic Responses of PV System with MPPT)

  • 응웬칸록;문대성;서재진;원동준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1142-1143
    • /
    • 2008
  • As well known, the maximum power point tracking (MPPT) is an important role in photovoltaic (PV) power systems. MPPT finds and maintains the operation of PV at the maximum power point when the irradiation and cell-temperature change. In this paper, the studied system includes a PV array, a Buck-Boost DC/DC converter, a DC/AC inverter and it is connected to the three phase power system. The solar array operates as a non-linear voltage source. The P&O algorithm with power feed-back is used to control the operating point of PV array at the maximum power point. The effects of irradiation and cell-temperature on the dynamic responses are also considered.

  • PDF

Performance Analysis and Experimental Verification of Buck Converter fed DC Series Motor using Hybrid Intelligent Controller with Stability Analysis and Parameter Variations

  • Thangaraju, I.;Muruganandam, M.;Madheswaran, M.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.518-528
    • /
    • 2015
  • This article presents a closed loop control of DC series motor fed by DC chopper controlled by an PID controller based intelligent control using ANN (Artificial Neural Network). The PID-ANN controller performances are analyzed in both steady state and dynamic operating condition with various set speed and various load torque. Here two different motor parameters are taken for analysis (220V and 110V motor parameters). The static and dynamic performances are taken for comparison with conventional PID controller and existing work. The steady state stability analysis of the system also made using the transfer function model. The equation model is also done to analysis the performances by set speed change and load torque change. The proposed controller have better control over the conventional PID controller and the reported existing work. This system is initially simulated using MATLAB / Simulink and then experimental setup done using P89V51RD2BN microcontroller.

직류링크전압가변에 의한 무전극램프의 조광제어 안정기 개발 (Development of a Dimming Ballast for Electrodeless Fluorescent Lamps by Controlling DC-Link Voltage)

  • 장목순;임병노;신동석;이영만;박종연
    • 전력전자학회논문지
    • /
    • 제13권2호
    • /
    • pp.103-109
    • /
    • 2008
  • 본 논문은 무전극램프의 조광제어에 관한 안정기 설계방법을 제안하였다. 주파수 가변을 통한 전력제어는 램프의 등가 임피던스를 나타내는 유도코일간의 결합계수, 플라즈마 저항은 전력에 대한 함수이기 때문에 부적합하다. 따라서 본 논문은 직류링크전압을 가변함으로서 램프 임피던스와 독립적으로 램프의 출력 전력을 제어함으로서 무전극램프를 조광제어 하였다. 직류 링크 전압 가변방법은 벅 컨버터에 의해 제어하였으며, 제안된 설계 방법의 시뮬레이션과 실험 결과를 통하여 논문의 타당함을 증명하였다.

Optimization of Powder Core Inductors of Buck-Boost Converters for Hybrid Electric Vehicles

  • You, Bong-Gi;Kim, Jong-Soo;Lee, Byoung-Kuk;Choi, Gwang-Bo;Yoo, Dong-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권4호
    • /
    • pp.527-534
    • /
    • 2011
  • In the present paper, the characteristics of Mega-Flux$^{(R)}$, JNEX-Core$^{(R)}$, amorphous and ferrite cores are compared to the inductor of buck-boost converters for Hybrid Electric Vehicles. Core losses are analyzed at the condition of 10 kHz sine wave excitations, and permeability fluctuations vs. temperature and magnetizing force will be analyzed and discussed. Under the specifications of the buck-boost converter for 20 kW THS-II, the power inductor will be designed with Mega-Flux$^{(R)}$ and JNEX-Core$^{(R)}$, and informative simulation results will be provided with respect to dc bias characteristics, core and copper losses.

Digitally Current Controlled DC-DC Switching Converters Using an Adjacent Cycle Sampling Strategy

  • Wei, Tingcun;Wang, Yulin;Li, Feng;Chen, Nan;Wang, Jia
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.227-237
    • /
    • 2016
  • A novel digital current control strategy for digitally controlled DC-DC switching converters, referred to as Adjacent Cycle Sampling (ACS), is proposed in this paper. For the ACS current control strategy, the available time interval from sampling the current to updating the duty ratio, is approximately one switching cycle. In addition, it is independent of the duty ratio. As a result, the contradiction between the processing speed of the hardware and the transient response speed can be effectively relaxed by using the ACS current control strategy. For digitally controlled buck DC-DC switching converters with trailing-edge modulation, digital current control algorithms with the ACS control strategy are derived for three different control objectives. These objectives are the valley, average, and peak inductor currents. In addition, the sub-harmonic oscillations of the above current control algorithms are analyzed and eliminated by using the digital slope compensation (DSC) method. Experimental results based on a FPGA are given, which verify the theoretical analysis results very well. It can be concluded that the ACS control has a faster transient response speed than the time delay control, and that its requirements for hardware processing speed can be reduced when compared with the deadbeat control. Therefore, it promises to be one of the key technologies for high-frequency DC-DC switching converters.

A Bidirectional Single-Stage DC/AC Converter for Grid Connected Energy Storage Systems

  • Chen, Jianliang;Liao, Xiaozhong;Sha, Deshang
    • Journal of Power Electronics
    • /
    • 제15권4호
    • /
    • pp.1026-1034
    • /
    • 2015
  • In this paper, a unified control strategy using the current space vector modulation (CSVM) technique is proposed and applied to a bidirectional three-phase DC/AC converter. The operation of the converter changes with the direction of the power flow. In the charging mode, it works as a buck type rectifier; and during the discharging mode, it operates as a boost type inverter, which makes it suitable as an interface between high voltage AC grids and low voltage energy storage devices. This topology has the following advantages: high conversion efficiency, high power factor at the grid side, tight control of the charging current and fast transition between the charging and discharging modes. The operating principle of the mode analysis, the gate signal generation, the general control strategy and the transition from a constant current (CC) to a constant voltage (CV) in the charging mode are discussed. The proposed control strategy has been validated by simulations and experimental results obtained with a 1kW laboratory prototype using supercapacitors as an energy storage device.

Interleaved Boost-Flyback Converter with Boundary Conduction Mode for Power Factor Correction

  • Lin, Bor-Ren;Chien, Chih-Cheng
    • Journal of Power Electronics
    • /
    • 제12권5호
    • /
    • pp.708-714
    • /
    • 2012
  • This paper presents a new interleaved pulse-width modulation (PWM) boost-flyback converter to achieve power factor correction (PFC) and regulate DC bus voltage. The adopted boost-flyback converter has a high voltage conversion ratio to overcome the limit of conventional boost or buck-boost converter with narrow turn-off period. The proposed converter has wide turn-off period compared with a conventional boost converter. Thus, the higher output voltage can be achieved in the proposed converter. The interleaved PWM can further reduce the input and output ripple currents such that the sizes of inductor and capacitor are reduced. Since boundary conduction mode (BCM) is adopted to achieve power factor correction, power switches are turned on at zero current switching (ZCS) and switching losses are reduced. The circuit configuration, principle operation, system analysis, and design consideration of the proposed converter are presented in detail. Finally, experiments conducted on a laboratory prototype rated at 500W were presented to verify the effectiveness of the converter.

단상 태양광 발전용 고효율 벅부스트 하프브리지 인버터 (A High-efficiency Buck-boost Half-bridge Inverter for Single-phase Photovoltaic Generation)

  • 류형민
    • 전기전자학회논문지
    • /
    • 제27권4호
    • /
    • pp.450-455
    • /
    • 2023
  • 태양광 패널의 큰 기생 커패시턴스에 기인하는 과도한 누설 전류를 피하기 위한 단상 태양광 인버터 중에 부스트 컨버터와 하프브리지 인버터를 종속적으로 결합하는 방식은 가장 단순하면서 누설 전류가 가장 작다. 하지만 직류단 전압이 높아 스위칭 소자의 정격 전압이 높고 스위칭 손실이 크다. 본 논문은 부스트 컨버터를 제거하는 대신에 하프브리지 인버터의 출력 측에 2개의 양방향 스위치를 추가함으로써 벅부스트 인버터로 동작할 수 있는 새로운 회로 토폴로지를 제안한다. 고전압 직류단을 거치는 두 단계의 전력 변환을 한 단계로 줄인 덕분에 전력 손실을 절감할 수 있으며 비용 및 누설 전류는 증가하지 않는다. 제안된 회로 토폴로지의 타당성은 컴퓨터 시뮬레이션 및 전력 손실 계산을 통해 검증한다.