• Title/Summary/Keyword: DC/DC buck converter

Search Result 389, Processing Time 0.029 seconds

PRACTICAL SWITCH BASED STATE-SPACE MODELING OF DC-DC CONVERTERS ( PART II ) : ALL PARASITICS (실제적인 스윗치를 사용한 직류 변환기의 상태 공간 모델링 (II) : 모든 부수적인 요소 포함)

  • Rim, C.T.;Joung, G.B.;Cho, G.H.
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.109-112
    • /
    • 1988
  • All parasitics such as switch conduction voltages, conduction resistances, switching times and ESR''s of capacitors are counted in the new state-space modeling based on non-ideal switching functions. An equivalent simplified model is derived from the complex circuit with parasitics. Hence the results are very simple and exact, which are very important features of modelings. The pole frequency, dc voltage gain, and efficiency of the general converter, the buck-boost converter are analyzed and verified by the experiments with good agreements with the theories. This may be a good summary for the previous works concerned with parasitics.

  • PDF

Two-Stage Inductive Power Transfer Charger for Electric Vehicles (전기자동차 충전기용 2-Stage 자기유도 무선전력전송 시스템)

  • Kim, Min-Jung;Joo, Dong-Myoung;Ann, Sang-Joon;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.2
    • /
    • pp.134-139
    • /
    • 2017
  • In this study, an inductive power transfer (IPT) charger for electric vehicles is proposed to improve the entire system efficiency and power density by eliminating the DC-DC converter in the secondary side. In the proposed IPT charger, the DC-link voltage is adjusted according to the coupling coefficient through cascade buck-boost converter in the front-end side, and the bridgeless rectifier performs the charging of battery. The control algorithm for the proposed IPT system is theoretically explained, and the validity of the proposed system is verified by informative simulation.

A zero-voltage zero-current switching power conversion system for fuel cell (영전압 영전류 스위칭을 이용한 연료전지용 전력변환시스템)

  • Son, Gyoung-Jong;Song, Sung-Geun;Moon, Chae-Joo;Kim, Kwang-Heon;Lim, Young-Cheol;Choi, Joon-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.385-394
    • /
    • 2006
  • The application areas of traditional push-pull converters are limited because the voltage stress of switches is high (twice of the input voltage). But the push - pull converter topology is suitable for unregulated low-voltage to high-voltage power conversion such as the fuel cell. This paper presents a novel power converter structure that is very suitable for the DC/DC converter in fuel cell systems. Based on this structure, a ZVS- ZCS push-pull converter is proposed. The switches of the proposed push-pull converter can operate under ZVS or ZCS condition with the help of a new passive clamping circuit. The passive clamping techniques solves the voltage overshoot problem. Because the buck converter circuit operates at twice the synchronous switching frequency of the push-pull converter, the peak current in the current-fed inductor and transformer is reduced. The operation principle of the proposed converter is analyzed and verified by simulations and experimental results. A 1 kW DC/DC converter was implemented with DSP TMS320F2812, from which experimental results have shown that efficiency improvement and surge suppression can be achieved effectively.

Development of Power Supply for Ka-band Tracking Radars (Ka-대역 추적 레이더용 전원공급기 개발)

  • Lee, Dongju;An, Se-Hwan;Joo, Ji-Han;Kwon, Jun-Beom;Seo, Mihui
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.99-103
    • /
    • 2022
  • Millimeter-wave tracking radars operate in various environmental restrictions, thus they demand stable power sources with low noise level under high fluctuation of input voltage. This paper presents the design and implementation of the compact power supply with max power of 727 W for Ka-band tracking radar applications. To meet requirements of voltage accuracy and system efficiency for transceiver circuits, upper plates of buck converters are attached on the covers of power supply for efficient heat dissipation. The proposed power supply achieves system efficiency of 88.4 %, output voltage accuracy of ±2 % and noise level of <1% under full load conditions.

A Study on the Multi-resonant characteristics of Half-wave Resonant Type Multi-output ZVS HB Converter for the Plasma Display Panel (PDP용 반파 공진형 멀티출력 하프브리지 컨버터의 다중 공진특성에 관한 연구)

  • Lee, Jae-In;Son, Ho-In
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.6
    • /
    • pp.314-324
    • /
    • 2006
  • In recent years, having the advantages of being small, low in cost and high in efficiency, Half-wave resonant type, (having only one output diode), is used in ZVS Half-Bridge DC/DC converter. This paper presents the operation mode by multi-resonant factors in the Half-wave type multi-resonant converter with direct Buck chopper circuit operated in discontinuous current mode. To study the characteristics of a multi-resonant operation in steady-state, the characteristic impedances in each mode and safe operation-region(S.O.R) are reported. Computer simulation and experimental data are also riven to verify the theoretical results.

Comparison of V-I/I-V droop control method in parallel buck converters (벅 컨버터의 병렬운전을 위한 전류/전압 기반 드룹제어기의 비교)

  • Cho, Wontae;Cho, Younghoon
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.217-218
    • /
    • 2018
  • Droop control method is the conventional controller to solve the problem of current sharing error and voltage deviation that can occur in parallel connection of DC-DC converter. This paper compared V-I droop control with I-V droop control, which based on communication and confirmed the results through experiments.

  • PDF

High-density LDC design for ultra-compact electric vehicles (초소형 전기자동차용 고밀도 LDC 설계)

  • Kim, TaeWon;Lee, JaeWon;Song, HyeonSeok;Chai, YongYoong;Kim, JunHo
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.304-305
    • /
    • 2020
  • 본 논문은 초소형 전기자동차용 Low voltage DC-DC Converter(LDC)의 고전력밀도화 기법을 제시한다. Sync-Buck 구조를 사용해 구조를 단순화하고, Planar 인덕터 적용, PCB와 방열 plate를 사용하여 PCB와 방열 기구물의 접촉면을 증대시킴으로써 전력밀도를 향상시킬 수 있음을 보인다. 500W(12V, 41.67A)급 시제품 제작 및 배터리 입력 조건인 58V~84V 영역에서 실험을 통해 제안한 기법의 타당성을 검증한다.

  • PDF

Analysis of Buck-Boost Converter for LED Drive (LED 구동을 위한 승강압 DC/DC 컨버터에 관한 연구)

  • Joe, Wi-Keun;Kim, Yong;Lee, Dong-Hyun;Cho, Kyu-Man;Lee, Eun-Young
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.967_968
    • /
    • 2009
  • For lighting application, high-power LED nowadays is driven at 350mA and a sensing resistor is used to provide feedback for LED-current regulation. This method adds an IR drop at the output branch, and limits power efficiency as LED current is large and keeps increasing. In this paper, a power efficient LED-current sensing circuit is proposed. The circuit does not use any sensing resistor but extracts LED-current information from the output capacitor of the driver. Controlling the brightness of LEDs requires a driver that provides a constant, regulated current. In one case, the converter may need to step down the input voltage, and, in another, it may need to boost up the output voltage. These situations often arise in applications with wide-ranging ""dirty"" input power sources, such as automotive systems. And, the driver topology must be able to generate a large enough output voltage to forward bias the LEDs. So, to provide this requirements, 13W prototype Buck-Boost Converter is used.

  • PDF

A High Efficiency MHD Lamp Ballast with a Frequency Controlled Synchronous Rectifier (주파수 가변 동기 정류기를 이용한 고효율 MHD 램프 안정기)

  • Hyun B.C.;Lee I.K.;Cho B.H.
    • Proceedings of the KIPE Conference
    • /
    • 2004.11a
    • /
    • pp.71-75
    • /
    • 2004
  • In this paper, in order to develop a simple and high efficient ballast without an external igniter, a half-bridge type ballast with a coupled inductor and a frequency controlled synchronous rectifier is proposed. The internal LC resonance of the buck converter is used In generate a high voltage pulse for the ignition, and the coupled inductor filter is used for steady state ripple cancellation. Also, a synchronous buck converter is applied for the DC/DC converter stage. In order to improve the efficiency of the ballast, a frequency control method is proposed. This scheme reduces a circulation current and turn off loss of the MOSFET switch on the constant power operation, which results in increase of the efficiency of the ballast system about $4\%$, compared to a fixed frequency control. It consists a 2-stage version ballast with a PFC circuit. The results are verified with hardware experiments.

  • PDF

Simple Fuzzy PID Controllers for DC-DC Converters

  • Seo, K.W.;Choi, Han-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.724-729
    • /
    • 2012
  • A fuzzy PID controller design method is proposed for precise robust control of DC-DC buck converters. The PID parameters are determined reflecting on the common control engineering knowledge that transient performances can be improved if the P and I gains are big and the D gain is small at the beginning. Different from the previous fuzzy control design methods, the proposed method requires no defuzzification module and the global stability of the proposed fuzzy control system can be guaranteed. The proposed fuzzy PID controller is implemented by using a low-cost 8-bit microcontroller, and simulation and experimental results are given to demonstrate the effectiveness of the proposed method.