• 제목/요약/키워드: DBR Porous Silicon

검색결과 15건 처리시간 0.022초

DBR 다공성 실리콘과 Host 다공성 실리콘으로 이루어진 이중 다공성 실리콘의 제조와 광학적 특성 (Preparation and Optical Characterization of DBR/Host Dual Porous Silicon Containing DBR and Host Structures)

  • 최태은;양진석;엄성용;진성훈;조보민;조성동;손홍래
    • 통합자연과학논문집
    • /
    • 제3권2호
    • /
    • pp.78-83
    • /
    • 2010
  • DBR/Host dual porous silicons containing DBR and host structure were prepared and their optical properties were characterized using Ocean Optics spectrometer. In this dual porous silicon, single porous silicon layer was used as host layer for possible biomolecule and drug materials and DBR porous silicon layer was used for signal transduction due to the recognition of molecules. Optical reflection spectrum of dual porous silicon displayed only DBR reflection but Fabry-Perot fringe pattern. DBR reflection band of dual porous silicon shifted to the shorter wavelength as the etching time of host layer increased. Cross-sectional FE-SEM image of dual porous silicon displayed a thickness of about 20 micrometer for DBR porous silicon layer. Developed etching technology could be useful to prepare DBR porous silicon which exhibited specific reflection resonance at the required wavelength and to provide an label-free biosensors and drug delivery materials.

DBR 다공성 실리콘을 이용한 휘발성 유기화합물의 감지 (Detection of Voletile Organic Compounds by Using DBR Porous Silicon)

  • 박철영
    • 통합자연과학논문집
    • /
    • 제2권4호
    • /
    • pp.275-279
    • /
    • 2009
  • Recently, number of studies for porous silicon (PSi) have been investigated by many researchers. Multistructured porous silicon such as a distributed Bragg reflector (DBR) PSi, has been a topic of interest, because of its unique optical properties. DBR PSi were prepared by using an electrochemical etch of $P{^+}{^+}$-type silicon wafer with resistivity between 0.1 and $10m{\Omega}cm$. The electrochemical etch with square wave current density results in two different refractive indices in the porous layer. In this work, DBR porous silicon chips for a simple and portable organic vapor-sensing device have fabricated. The optical characteristics of DBR PSi have been investigated. DBR porous silicon have been characterized by FT-IR and Ocean optics 2000 spectrometer. The device used DBR PSi chip has been demonstrated as an excellent gas sensor, showing a great senstivity to organic vapor at room temperature.

  • PDF

Fabrication and Characterization of DBR Porous Silicon Chip for the Detection of Chemical Nerve Agents

  • 정경선
    • 통합자연과학논문집
    • /
    • 제3권4호
    • /
    • pp.237-240
    • /
    • 2010
  • Recently, number of studies for porous silicon have been investigated by many researchers. Multistructured porous silicon (PSi), distributed Bragg reflector (DBR) PSi, has been a topic of interest, because of its unique optical properties. DBR PSi were prepared by an electrochemical etch of $P^{{+}{+}}$-type silicon wafer of resistivity between 0.1 $m{\Omega}cm$ with square wave current density, resulting two different refractive indices. In this work, We have fabricated a simple and portable organic vapor-sensing device based on DBR porous silicon and investigated the optical characteristics of DBR porous silicon. DBR porous silicon have been characterized by FT-IR, Ocean optics 2000 spectrometer. The device used DBR PSi chip has been demonstrated as an excellent gas sensor, showing a great senstivity to a toxic vapor (TEP, DMMP, DEEP) at room temperature.

Distributed Bragg Reflector, Microcavity 구조를 갖는 다공질규소의 반사율 스펙트럼 (Reflectance spectrum properties of DBR and microcavity porous silicon)

  • 김영유;김한중
    • 한국결정성장학회지
    • /
    • 제19권6호
    • /
    • pp.293-297
    • /
    • 2009
  • 본 연구에서는 p형 단결정 규소 기판을 에칭시켜 다층구조를 갖는 DBR 및 Microcavity 다공질규소를 제작하고, 그 반사율 스펙트럼을 조사하였다. 그 결과 다층구조를 갖는 다공질규소의 반사율 스펙트럼에서 프린지 패턴의 수는 단일층 다공질규소의 경우보다 상대적으로 많았으며, 특정 파장에서 반사율은 90 % 이상으로 나타났다. 그리고 DBR 다공질규소에서 최대 반사율 봉우리의 FWHM 값은 33 nm로 매우 좁게 나타났다.

Fabrication and Characterization of Optically Encoded Porous Silicon Smart Particles

  • Sohn, Honglae
    • 통합자연과학논문집
    • /
    • 제7권4호
    • /
    • pp.221-226
    • /
    • 2014
  • Optically encoded porous silicon smart particles were successfully fabricated from the free-standing porous silicon thin films using ultrasono-method. DBR PSi was prepared by an electrochemical etch of heavily doped $p^{{+}{+}}$-type silicon wafer. DBR PSi was prepared by using a periodic pseudo-square wave current. The surface-modified DBR PSi was prepared by either thermal oxidation or thermal hydrosilylation. Free-standing DBR PSi films were generated by lift-off from the silicon wafer substrate using an electropolishing current. Free-standing DBR PSi films were ultrasonicated to create DBR-structured porous smart particles. Optical characteristics of porous smart particles were measured by FT-IR spectroscopy. The surface morphology of porous smart particles was determined by FE-SEM.

전류세기의 변화에 따른 DBR 다공성 실리콘의 광학적 특성 (Optical Characterization of DBR Porous Silicon by Changing of Applied Current Density)

  • 최태은;박재현
    • 통합자연과학논문집
    • /
    • 제2권2호
    • /
    • pp.82-85
    • /
    • 2009
  • Distributed Bragg reflector (DBR) porous silicon (PSi) was generated by an electrochemical etching a bragg structure into a silicon wafer through electrode current in aqueous ethanolic HF solution. DBR PSi exhibiting unique reflectivity was successfully obtained by an electrochemical etching of silicon wafer using square current waveform. The multilayered photonic crystals of DBR PSi exhibited the reflection of a specific wavelength with high reflectivity in the optical reflectivity spectrum. In this work, we have developed a method to create refractive index in Si substrate through intensity of an electric current. The electrochemical process allows for precise control of the structural properties of DBR PSi such as thickness of the porous layer, porosity, and average pore diameter. The number of reflection peak of DBR PSi and its pore size increased as the intensity of electric current increased. This might be a demonstration for the fabrication of specific reflectors or filters.

  • PDF

Chemical Sensors Based on Distributed Bragg Reflector Porous Silicon Smart Particles

  • Sohn, Honglae
    • 통합자연과학논문집
    • /
    • 제8권1호
    • /
    • pp.67-74
    • /
    • 2015
  • Sensing characteristics for porous smart particle based on DBR smart particles were reported. Optically encoded porous silicon smart particles were successfully fabricated from the free-standing porous silicon thin films using ultrasono-method. DBR PSi was prepared by an electrochemical etch of heavily doped $p^{++}$-type silicon wafer. DBR PSi was prepared by using a periodic pseudo-square wave current. The surface-modified DBR PSi was prepared by either thermal oxidation or thermal hydrosilylation. Free-standing DBR PSi films were generated by lift-off from the silicon wafer substrate using an electropolishing current. Free-standing DBR PSi films were ultrasonicated to create DBR-structured porous smart particles. Three different surface-modified DBR smart particles have been prepared and used for sensing volatile organic vapors. For different types of surface-modified DBR smart particles, the shift of reflectivity mainly depends on the vapor pressure of analyte even though the surfaces of DBR smart particles are different. However huge difference in the shift of reflectivity depending on the different types of surface-modified DBR smart particles was obtained when the vapor pressures are quite similar which demonstrate a possible sensing application to specify the volatile organic vapors.

비고정화 된 일차원 광결정의 DBR 다공성 실리콘을 이용한 센서와 Drug Delivery로의 응용 (1-D photonic crystals of free-standing DBR PSi for sensing and drug delivery applications)

  • 고영대;김지훈;박종선;김성기;김동수;조성동;손홍래
    • 센서학회지
    • /
    • 제15권6호
    • /
    • pp.391-396
    • /
    • 2006
  • Free-standing multilayer distributed Bragg reflectors (DBR) porous silicon dielectric mirrors, prepared by electrochemical etching of crystalline silicon using square wave currents are treated with polystyrene to produce flexible, stable composite materials in which the porous silicon matrix is covered with caffeine-impregnated polystyrene. Optically encoded DBR PSi/polystyrene composite films retain the optical reflectivity. Optical characteristics of DBR PSi/polystyrene composite films are stable and robust for 2 hrs in a pH=7 aqueous buffer solution. The appearance of caffeine and change of DBR peak were simultaneously measured by UV-vis spectrometer and Ocean optics 2000 spectrometer, respectively.

Chemical and Physical Properties of Porous Silicon

  • Lee, Bo-Yeon;Hwang, Minwoo;Cho, Hyun;Kim, Hee-Chol;Jang, Seunghyun
    • 통합자연과학논문집
    • /
    • 제4권3호
    • /
    • pp.187-191
    • /
    • 2011
  • The differences of properties for both single-layered and multi-layered porous silicon were investigated. Multistructured porous silicons such as DBR or rugate porous silicon exhibit strong reflection resonances providing the reflection of a specific wavelength in the optical reflectivity spectrum. DBR PSi displays a square varying porosity gradient in the direction perpendicular to the plane of the filter but a sinusoidally varying porosity gradient was obtained for rugate PSi.

Fabrication and Characterization of Free-Standing DBR Porous Silicon Film

  • Um, Sungyong;Sohn, Honglae
    • 통합자연과학논문집
    • /
    • 제7권1호
    • /
    • pp.1-4
    • /
    • 2014
  • Distributed Bragg reflector porous silicon of different characteristics were formed to determine their optical constants in the visible wavelength range using a periodic square wave current between low and high current densities. The surface and cross-sectional SEM images of distributed Bragg reflector porous silicon were obtained using a cold field emission scanning electron microscope. The surface image of distributed Bragg reflector porous silicon indicates that the distributions of pores are even. The cross-sectional image illustrates that the multilayer of distributed Bragg reflector porous silicon exhibits a depth of few microns and applying of square current density during the etching process results two distinct refractive indices in the contrast. Distributed Bragg reflector porous silicon exhibited a porosity depth profile that related directly to the current-time profile used in etch. Its free-standing film was obtained by applying an electro-polishing current.