• Title/Summary/Keyword: DASDV

Search Result 4, Processing Time 0.02 seconds

Pattern Classification Algorithm for Wrist Movements based on EMG (근전도 신호 기반 손목 움직임 패턴 분류 알고리즘에 대한 연구)

  • Cui, H.D.;Kim, Y.H.;Shim, H.M.;Yoon, K.S.;Lee, S.M.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.7 no.2
    • /
    • pp.69-74
    • /
    • 2013
  • In this paper, we propose the pattern classification algorithm of recognizing wrist movements based on electromyogram(EMG) to raise the recognition rate. We consider 30 characteristics of EMG signals wirh the root mean square(RMS) and the difference absolute standard deviation value(DASDV) for the extraction of precise features from EMG signals. To get the groups of each wrist movement, we estimated 2-dimension features. On this basis, we divide each group into two parts with mean to compare and promote the recognition rate of pattern classification effectively. For the motion classification based on EMG, the k-nearest neighbor(k-NN) is used. In this paper, the recognition rate is 92.59% and 0.84% higher than the study before.

  • PDF

Artificial Neural Network based Motion Classification Algorithm using Surface Electromyogram (표면 근전도를 이용한 Artificial Neural Network 기반의 동작 분류 알고리즘)

  • Jeong, E.C.;Kim, S.J.;Song, Y.R.;Lee, S.M.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.6 no.1
    • /
    • pp.67-73
    • /
    • 2012
  • In this paper, Artificial Neural Network(ANN) based motion classification algorithm is proposed to classify wrist motions using surface electromyograms(sEMG). surface EMGs are obtained from two electrodes placed on the flexor carpi ulnaris muscle and extensor carpi ulnaris muscle of 26 subjects under no strain condition during wrist motions and used to recognize wrist motions such as up, down, left, right, and rest. Feature is extracted from obtained EMG signals in time domain for fast processing and used to classify wrist motions using ANN. DAMV, DASDV, MAV, and RMS were used as features and accuracies of motion classification based on ANN were 98.03% for DAMV, 97.97% for DASDV, 96.95% for MAV, 96.82% for RMS.

  • PDF

Improvements of Multi-features Extraction for EMG for Estimating Wrist Movements (근전도 신호기반 손목 움직임의 추정을 위한 다중 특징점 추출 기법 알고리즘)

  • Kim, Seo-Jun;Jeong, Eui-Chul;Lee, Sang-Min;Song, Young-Rok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.757-762
    • /
    • 2012
  • In this paper, the multi feature extraction algorithm for estimation of wrist movements based on Electromyogram(EMG) is proposed. For the extraction of precise features from the EMG signals, the difference absolute mean value(DAMV), the mean absolute value(MAV), the root mean square(RMS) and the difference absolute standard deviation value(DASDV) to consider amplitude characteristic of EMG signals are used. We figure out a more accurate feature-set by combination of two features out of these, because of multi feature extraction algorithm is more precise than single feature method. Also, for the motion classification based on EMG, the linear discriminant analysis(LDA), the quadratic discriminant analysis(QDA) and k-nearest neighbor(k-NN) are used. We implemented a test targeting twenty adult male to identify the accuracy of EMG pattern classification of wrist movements such as up, down, right, left and rest. As a result of our study, the LDA, QDA and k-NN classification method using feature-set with MAV and DASDV showed respectively 87.59%, 89.06%, 91.75% accuracy.

Feature Extraction and Evaluation for Classification Models of Injurious Falls Based on Surface Electromyography

  • Lim, Kitaek;Choi, Woochol Joseph
    • Physical Therapy Korea
    • /
    • v.28 no.2
    • /
    • pp.123-131
    • /
    • 2021
  • Background: Only 2% of falls in older adults result in serious injuries (i.e., hip fracture). Therefore, it is important to differentiate injurious versus non-injurious falls, which is critical to develop effective interventions for injury prevention. Objects: The purpose of this study was to a. extract the best features of surface electromyography (sEMG) for classification of injurious falls, and b. find a best model provided by data mining techniques using the extracted features. Methods: Twenty young adults self-initiated falls and landed sideways. Falling trials were consisted of three initial fall directions (forward, sideways, or backward) and three knee positions at the time of hip impact (the impacting-side knee contacted the other knee ("knee together") or the mat ("knee on mat"), or neither the other knee nor the mat was contacted by the impacting-side knee ("free knee"). Falls involved "backward initial fall direction" or "free knee" were defined as "injurious falls" as suggested from previous studies. Nine features were extracted from sEMG signals of four hip muscles during a fall, including integral of absolute value (IAV), Wilson amplitude (WAMP), zero crossing (ZC), number of turns (NT), mean of amplitude (MA), root mean square (RMS), average amplitude change (AAC), difference absolute standard deviation value (DASDV). The decision tree and support vector machine (SVM) were used to classify the injurious falls. Results: For the initial fall direction, accuracy of the best model (SVM with a DASDV) was 48%. For the knee position, accuracy of the best model (SVM with an AAC) was 49%. Furthermore, there was no model that has sensitivity and specificity of 80% or greater. Conclusion: Our results suggest that the classification model built upon the sEMG features of the four hip muscles are not effective to classify injurious falls. Future studies should consider other data mining techniques with different muscles.