• Title/Summary/Keyword: DAR(1)

Search Result 396, Processing Time 0.021 seconds

EVALUATION FOR DAMAGED DEGREE OF VEGETATION BY FOREST FIRE USING LIDARAND DIGITALAERIAL PHOTOGRAPH

  • Kwak, Doo-Ahn;Chung, Jin-Won;Lee, Woo-Kyun;Lee, Seung-Ho;Cho, Hyun-Kook;We, Gwang-Jae;Kim, Tae-Min
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.533-536
    • /
    • 2007
  • The LiDAR data structure has the potential for modeling in three dimensions because the LiDAR data can represent voxels with z value under certain defined conditions. Therefore, it is possible to classify the physical damaged degree of vegetation by forest fire as using the LiDAR data because the physical loss of canopy height and width by forest fire can be relative to an amount of points reached to the ground through the canopy of damaged forest. On the other hand, biological damage of vegetation by forest fire can be explained using the NDVI (Normalized Difference Vegetation Index) which show vegetation vitality. In this study, we graded the damaged degree of vegetation by forest fire in Yangyang-Gun of South Korea using the LiDAR data for physical grading and digital aerial photograph including Red, Green, Blue and Near Infra-Red bands for biological grading. The LiDAR data was classified into 2 classes, of which one was Serious Physical Damaged (SPD) and the other was Light Physical Damaged (LPD) area. The NDVI was also classified into 2 classes which are Serious Biological Damaged (SBD) and Light Biological Damaged (LBD) area respectively. With each 2 classes ofthe LiDAR data and NDVI, the damaged area by forest fire was graded into 4 degrees like damaged class 1,2,3 and 4 grade. As a result of this study, 1 graded area was the broadest and next was the 3 grade. With this result, we could know that the burned area by forest fire in Yangyang-Gun was damaged rather biologically because the NDVI in 1 and 3 grade appeared low value whereas the LiDAR data in 1 and 3 grade included light physical damage like the LPD.

  • PDF

Analysis of Data Characteristics by UAV LiDAR Sensor (무인항공 LiDAR 센서에 따른 데이터 특성 분석)

  • Park, Joon-Kyu;Lee, Keun-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.1-6
    • /
    • 2020
  • UAV (Unmanned Aerial Vehicles) are used widely for military purposes because they are more economical than general manned aircraft and satellites, and have easy access to the object. Recently, owing to the development of IT technology, UAV equipped with various sensors have been released, and their use is increasing in a wide range of fields, such as surveying, agriculture, meteorological observation, communication, broadcasting, and sports. An increasing number of studies and attempts have made use of it. On the other hand, existing research was related mostly to photogrammetry, but there has been a lack of analytical research on LiDAR (Light Detection And Ranging). Therefore, this study examined the characteristics of a UAV LiDAR sensor for the application of a geospatial information field. In this study, the performance of commercialized LiDAR sensors, such as the acquisition speed and the number of echoes, was investigated, and data acquisition and analysis were conducted by selecting Surveyor Ultra and VX15 models with similar accuracy and data acquisition distances. As a result, a DSM of each study site was generated for each sensor, and the characteristics of data density, precision, and acquisition of ground data from vegetation areas were presented through comparison. In addition, the UAV LiDAR sensor showed an accuracy of 0.03m ~ 0.05m. Hence, it is necessary to select equipment considering the characteristics of data for effective use. In the future, the use of UAV LiDAR may be suggested if additional data can be obtained and analyzed for various areas, such as urban areas and forest areas.

Comparison of Characteristics of Drone LiDAR for Construction of Geospatial Information in Large-scale Development Project Area (대규모 개발지역의 공간정보 구축을 위한 드론 라이다의 특징 비교)

  • Park, Joon-Kyu;Lee, Keun-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.768-773
    • /
    • 2020
  • In large-scale land development for the rational use and management of national land resources, the use of geospatial information is essential for the efficient management of projects. Recently, drone LiDAR (Light Detection And Ranging) has attracted attention as an effective geospatial information construction technique for large-scale development areas, such as housing site construction and open-pit mines. Drone LiDAR can be classified into a method using SLAM (Simultaneous Localization And Mapping) technology and a GNSS (Global Navigation Satellite System)/IMU (Inertial Measurement Unit) method. On the other hand, there is a lack of analytical research on the application of drone LiDAR or the characteristics of each method. Therefore, in this study, data acquisition, processing, and analysis using SLAM and GNSS/IMU type drone LiDAR were performed, and the characteristics and utilization of each were evaluated. As a result, the height direction accuracy of drone LiDAR was -0.052~0.044m, which satisfies the allowable accuracy of geospatial information for mapping. In addition, the characteristics of each method were presented through a comparison of data acquisition and processing. Geospatial information constructed through drone LiDAR can be used in several ways, such as measuring the distance, area, and inclination. Based on such information, it is possible to evaluate the safety of large-scale development areas, and this method is expected to be utilized in the future.

Efficient method for acquirement of geospatial information using drone equipment in stream (드론을 이용한 하천공간정보 획득의 효율적 방안)

  • Lee, Jong-Seok;Kim, Si-Chul
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.2
    • /
    • pp.135-145
    • /
    • 2022
  • This study aims to verify the Drone utilization and the accuracy of the global navigation satellite system (GNSS), Drone RGB (Photogrammetry) (D-RGB), and Drone LiDAR (D-LiDAR) surveying performance in the downstream reaches of the local stream. The results of the measurement of Ground Control Point (GCP) and Check Point (CP) coordinates confirmed the excellence. This study was carried out by comparing GNSS, D-RGB, and D-LiDAR with the values which the hydraulic characteristics calculated using HEC-RAS model. The accuracy of three survey methods was compared in the area of the study which is the ownership station, to 6 GCP and 3 CP were installed. The comparison results showed that the D-LiDAR survey was excellent. The 100-year frequency design flood discharge was applied in the channel sections of the small stream. As a result of D-RGB surveying 2.30 m and D-LiDAR 1.80 m in the average bed elevation, and D-RGB surveying 4.73 m and D-LiDAR 4.25 m in the average flood condition. It is recommended that the performance of D-LiDAR surveying is efficient method and useful as the surveying technique of the geospatial information using the drone equipment in stream channel.

A Study on the Effects of Airborne LiDAR Data-Based DEM-Generating Techniques on the Quality of the Final Products for Forest Areas - Focusing on GroundFilter and GridsurfaceCreate in FUSION Software - (항공 LiDAR 자료기반 DEM 생성기법의 산림지역 최종산출물 품질에 미치는 영향에 관한 연구 - FUSION Software의 GroundFilter 및 GridsurfaceCreate 알고리즘을 중심으로 -)

  • PARK, Joo-Won;CHOI, Hyung-Tae;CHO, Seung-Wan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.1
    • /
    • pp.154-166
    • /
    • 2016
  • This study aims to contribute to better understanding the effects of the changes in the parameter values of GroundFilter algorithm(GF), which performs filtering process, and of GridsurfaceCreate algorithm(GC), which creates regular grid, provided in Fusion software on the accuracy of elevation of the final LiDAR-DEM products through comparative analysis. In order to test whether there are significant effects on the accuracy of the final LiDAR-DEM products due to the changes of GF(1, 3, 5, 7, 9) parameter levels and GC(1, 3, 5, 7, 9) parameter levels, two-way ANOVA is conducted based on residuals. The residuals are calculated using the differences between each sample plot's paired field-measured and DEM-derived elevation values given each individual GF and GC level. After that, Tukey HSD test is conducted as a post hoc test for grouping the levels. As a result of two-way ANOVA test, it is found that the change in the GF levels significantly affects the accuracy of LiDAR-DEM elevations(F-value : 27.340, p < 0.01), while the change in the GC levels does not significantly affect the accuracy of LiDAR-DEM elevations(F-value : 0.457). It is also found that the interaction effect between GF and GC levels is not likely to exist(F-value : 0.247). From the results of the Tukey HSD test in the GF levels, GF levels can be divided into two groups('7', '5', '9', '3' vs '1') by the differences of means of residuals. Given the current conditions, LiDAR-DEM can achieve the best accuracy when the level '7' and '3' are given as GF and GC level, respectively.

Analysis of Economical Efficiency of Digital Map in Production Cost by Aerial LiDAR Surveying (항공 LiDAR 측량에 의한 수치지도 제작의 경제성 분석)

  • Kang, Joon-Mook;Yoon, Hee-Cheon;Lee, Jin-Duk;Park, Joon-Kyu
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.1 s.39
    • /
    • pp.67-73
    • /
    • 2007
  • Recently, three-dimensional (3D) GI (Geospatial Information) using LiDAR system has been used various fields such as the production of digital map, the modeling of 3D building and urban area, and analysis of communication network and environmental effect. In this study, the production cost of digital map by aerial LiDAR surveying were compared with the cost by aerial photograph surveying for analysis of economical efficiency. It is expected that the results of this study will be used base data for production, update, revision of digital map and curtail effect of national budget.

  • PDF

Extraction of Building Boundary on Aerial Image Using Segmentation and Overlaying Algorithm (분할과 중첩 기법을 이용한 항공 사진 상의 빌딩 경계 추출)

  • Kim, Yong-Min;Chang, An-Jin;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.49-58
    • /
    • 2012
  • Buildings become complex and diverse with time. It is difficult to extract individual buildings using only an optical image, because they have similar spectral characteristics to objects such as vegetation and roads. In this study, we propose a method to extract building area and boundary through integrating airborne Light Detection and Ranging(LiDAR) data and aerial images. Firstly, a binary edge map was generated using Edison edge detector after applying Adaptive dynamic range linear stretching radiometric enhancement algorithm to the aerial image. Secondly, building objects on airborne LiDAR data were extracted from normalized Digital Surface Model and aerial image. Then, a temporary building areas were extracted by overlaying the binary edge map and building objects extracted from LiDAR data. Finally, some building boundaries were additionally refined considering positional accuracy between LiDAR data and aerial image. The proposed method was applied to two experimental sites for validation. Through error matrix, F-measure, Jaccard coefficient, Yule coefficient, and Overall accuracy were calculated, and the values had a higher accuracy than 0.85.

Basic Concepts and Geological Applications of LiDAR (LiDAR 기법의 기본원리와 지질학적 적용)

  • Kim, Hyun-Tae;Kim, Young-Seog;We, Kwang-Jae
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.123-135
    • /
    • 2014
  • Earthquakes can cause serious loss of life and significant property damage. Thus, the study of active faults is important in evaluating future fault activity and hazards caused by future earthquake events. Structural mapping and the tracing of active faults are the primary steps in studies of active faults. Until now, active faults in South Korea have been mapped using aerial photography, satellite images, and low-quality DEMs. Lineament analysis as a means of identifying active faults is relatively difficult in Korea due to geological characteristics (weak tectonic activity) and dense vegetation cover. In this paper, we introduce the basic concept of the LiDAR technique (a new prospective remote sensing method) and a data analysis method that can overcome these problems. This paper will contribute to a better understanding of the airborne LiDAR technique and its application to South Korea. Some preliminary results from Korean and USA LiDAR data show the usefulness of this technique for tracing lineaments, active faults, and terraces in South Korea.

A Study on the Efficiency of Cadastral Survey in Forest Areas Based on UAV LiDAR (UAV LiDAR 기반의 임야지역 지적측량 효율성 제고 방안)

  • Lee, Ki-Hoon
    • Journal of Cadastre & Land InformatiX
    • /
    • v.54 no.1
    • /
    • pp.5-17
    • /
    • 2024
  • In this study, we examined the applicability of UAV LiDAR for cadastral surveying and proposed the results. For this purpose, an experimental area was selected and point cloud data was created by scanning the terrain using UAV LiDAR. Since there is no comparative verification target in the forest area, the coordinates of the verification points were obtained by directly surveying the ridge and valley lines prescribed by the current law. Based on these points, the point cloud density within a 7cm radius was analyzed. As a result, an average of 46 point clouds were generated within a circle with a radius of 7 centimeters, which can build a more precise topography of the forest area, proving that precise cadastral surveying is possible. In the case of UAV LiDAR, it is expected that the boundaries of forest areas can be extracted more accurately and efficiently without the influence of trees compared to the existing cadastral survey method. This is expected to have many advantages in various fields that want to use it in the future, such as the creation of stereoscopic maps of forest areas and terrain modeling for disaster safety in the forest areas.

Distribution of DArT Markers in a Genetic Linkage Map of Tomato (토마토 유전자연관지도 상의 DarT 마커 분포)

  • Truong, Hai Thi Hong;Graham, Elaine;Esch, Elisabeth;Wang, Jaw-Fen;Hanson, Peter
    • Horticultural Science & Technology
    • /
    • v.28 no.4
    • /
    • pp.664-671
    • /
    • 2010
  • A genetic linkage map was constructed using 188 $F_9$ RILs derived from a cross between $Solanum$ $lycopersicum$ H7996 (resistant to bacterial wilt) and $S.$ $pimpinellifolium$ WVa700 (highly susceptible to bacterial wilt). The map consisted of 361 markers including 260 DArTs, 74 AFLPs, 4 RFLPs, 1 SNP, and 22 SSRs. The resulting linkage map was comprised of 13 linkage groups covering 2042.7 cM. The genetic linkage map had an average map distance between markers of 5.7 cM, with an average DArT marker density of 1/7.9 cM. Based on the distribution of anchor SSR markers, 11 linkage groups were assigned to 10 chromosomes of tomato except chromosomes 5 and 12. The DArT markers were distributed across the genome in a similar way as other markers and showed the highest frequency of clustering (38.8%) at ${\leq}$ 0.5 cM intervals between adjacent markers, which is 3 times higher than AFLPs (13.5%). The present study is the first utilization of DArT markers in tomato linkage map construction.