• Title/Summary/Keyword: D2Q9

Search Result 300, Processing Time 0.025 seconds

Performance Analysis on Soft Decision Decoding using Erasure Technique (COFDM 시스템에서 채널상태정보를 이용한 Viterbi 디코더)

  • 이원철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.10A
    • /
    • pp.1563-1570
    • /
    • 1999
  • This paper relates to the soft decision method with erasure technique in digital terrestrial television broadcasting system. The proposed decoder use the CSI derived from using the pilots in receiver. The active real(I) and imaginary(Q) data are transferred to the branch metric calculation block that decides the Euclidean distance for the soft decision decoding and also the estimated CSI values are transferred to the same block. After calculating the Euclidean distance for the soft decision decoding, the Euclidean distance of branch metric is multiplied by CSI. To do so, new branch metric values that consider each carrier state information are obtained. We simulated this method in better performance of about 0.15dB to 0.17dB and 2.2dB to 2.9dB in Rayleigh channel than that of the conventional soft decision Viterbi decoding with or without bit interleaver where the constellation is QPSK, 16-QAM and 64-QAM.

  • PDF

Robust Two-Phase Clock Oxide TFT Shift Register over Threshold Voltage Variation and Clock Coupling Noises

  • Nam, Hyoungsik;Song, Eunji
    • ETRI Journal
    • /
    • v.36 no.2
    • /
    • pp.321-324
    • /
    • 2014
  • This letter describes a two-phase clock oxide thin-film transistor shift register that executes a robust operation over a wide threshold voltage range and clock coupling noises. The proposed circuit employs an additional Q generation block to avoid the clock coupling noise effects. A SMART-SPICE simulation shows that the stable shift register operation is established for the clock coupling noises and the threshold voltage variation from -4 V to 5 V at a line time of $5{\mu}s$. The magnitude of coupling noises on the Q(15) node and Qb(15) node of the 15th stage is respectively -12.6 dB and -26.1 dB at 100 kHz in the proposed circuit, compared to 6.8 dB and 10.9 dB in a conventional one. In addition, the estimated power consumption is 1.74 mW for the proposed 16-stage shift registers at $V_{TH}=-1.56V$, compared to 11.5 mW for the conventional circuits.

CoMFA Analyses on the Fungicidal Activity with N-phenylbenzensulfonamide Analogues against Gray Mold (Botrytis cinerea) (잿빛곰팡이균(Botrytis cinerea)에 대한 N-phenylbenzenesulfonamide 유도체들의 살균활성에 관한 CoMFA 분석)

  • Hwang, Tae-Yeon;Kang, Kyu-Young;Sung, Nack-Do
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.2
    • /
    • pp.111-117
    • /
    • 2008
  • The comparative molecular field analysis (CoMFA) for the fungicidal activity with N-phenylbenzenesulfonamide analogues (1-45) against gray mold (Botriyts cinerea) were studied quantitatively. The statistical values of CoMFA models had much better predictability and fitness than those of comparative molecular similarity indices analysis (CoMSIA) models. The statistical values of the optimized CoMFA I model were predictablity, $r^2_{cv.}(or\;q^2)=0.457$ and correlation coefficient, $r^2_{ncv.}=0.959$, and their fungicidal activity was dependent on the steric field (52%) and electrostatic field (35.6%) of the substrate molecules. And also, it was found that the optimized CoMFA I model with the sensitivity to perturbation ($d_q^{2'}/dr^2_{yy'}=0.898$) and prediction ($q^2=0.346$ & SDEP=0.614) produced by a progressive scrambling analysis was not dependent on chance correlation. From the results of graphical analyses on the contour maps with the optimized CoMFA I model, it is expected that the $R_3$ and $R_4$-substituents on the N-phenyl ring as steric favor group and para-substituents ($R_1$) on the S-phenyl ring as steric disfavor group will contribute to the fungicidal activity. Therefore, the optimized CoMFA I model should be applicable to the prediction of the fungicidal activities against gray mold.

I/Q channel 12-Bit 120MHz CMOS D/A Converter for WLAN (무선랜용 I/Q 채널 12bit 120MHz CMOS D/A 변환기 설계)

  • Ha, Sung-Min;Nam, Tae-Kyu;Seo, Sung-Uk;Shin, Sun-Hwa;Joo, Chan-Yang;Yoon, Kwang-S.
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.83-89
    • /
    • 2006
  • This paper describes the design of I/Q channel 12bit Digital-to-Analog Converter(DAC) which shows the conversion rate of 120MHz and the power supply of 3.3V with 0.35um CMOS n-well 1-poly 4-metal process for advanced wireless transceiver. The proposed DAC utilizes 4-bit thermometer decoder with 3 stages for minimum glitch energy and linearity error. Also, using a optimized 4bit thermometer decoder for the decrement of the chip area. Integral nonlinearity(INL) of ${\pm}1.6LSB$ and differential nonlinearity(DNL) of ${\pm}1.3LSB$ have been measured. In single tone test, the ENOB of the proposed 12bit DAC is 10.5bit and SFDR of 73dB(@ Fs=120MHz, Fin=1MHz) is measured, respectively. Dual-tone test SFDR is 61 dB (@ Fs=100MHz, Fin=1.5MHz, 2MHz). Glitch energy of 31 pV.s is measured. The converter consumes a total of 105mW from 3.3-V power supply.

The Effect of Redox Potential on the Kinetics of Lysine Production by Corynebacterium glutamicum (Corynebacterium glutamicum에 의한 Lysine 생산에 있어서 산화환원 전위가 발효속도론적 특성에 미치는 영향)

  • 이진희;김성준;이재흥
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.1
    • /
    • pp.76-81
    • /
    • 1991
  • - The effect of redox potential (ORP) on lysine production by a leucine auxotrophic regulatory mutant of Corynebacterium glutclmicum on molasses medium was investigated in a 2-1 jar fermentor at pH 6.9 and $32^{\circ}C$. At a dilution rate of D=O.l $h ^1$, a maximum yield of Yr,,s=0.24 was obtained in either carbon- or leucine-limited chemostat where the redox potential was between -60 mV and - 100 mV. This level of redox potential corresponded to moderate oxygen deficiency. Under a high oxygen deficient condition of the redox potential of - 130 rnV (oxygen-limited chemostat), all the kinetic parameters such as $Y_[p/s}, q_s\; and \; q_p$ were decreased significantly and significant amounts of byproducts including glycine, alanine and valine were accumulated in the culture, indicating that the control of redox potential is important in lysine fermentation. At the redox potential of - 40 mV, on the other hand, large quantities of arginine (up to 0.38g/l) and glutamic acid (up to 0.12 g/l) were produced. A maximum lysine productivity of 2.41 g/l/h was achieved at - 66 mV under a carbon-limited condition.

  • PDF

Evidence of Spin Reorientation by Mössbauer Analysis

  • Myoung, Bo Ra;Kim, Sam Jin;Kim, Chul Sung
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.126-129
    • /
    • 2014
  • We report the crystallographic and magnetic properties of $Ni_{0.3}Fe_{0.7}Ga_2S_4$ by means of X-ray diffractometer (XRD), a superconducting quantum interference device (SQUID) magnetometer, and a M$\ddot{o}$ssbauer spectroscopy. In particular, $Ni_{0.3}Fe_{0.7}Ga_2S_4$ was studied by M$\ddot{o}$ssbauer analysis for evidence of spin reorientation. The chalcogenide material $Ni_{0.3}Fe_{0.7}Ga_2S_4$ was fabricated by a direct reaction method. XRD analysis confirmed that $Ni_{0.3}Fe_{0.7}Ga_2S_4$ has a 2-dimension (2-D) triangular lattice structure, with space group P-3m1. The M$\ddot{o}$ssbauer spectra of $Ni_{0.3}Fe_{0.7}Ga_2S_4$ at spectra at various temperatures from 4.2 to 300 K showed that the spectrum at 4.2 K has a severely distorted 8-line shape, as spin liquid. Electric quadrupole splitting, $E_Q$ has anomalous two-points of temperature dependence of $E_Q$ curve as freezing temperature, $T_f=11K$, and N$\acute{e}$el temperature, $T_N=26K$. This suggests that there appears to be a slowly-fluctuating "spin gel" state between $T_f$ and $T_N$, caused by non-paramagnetic spin state below $T_N$. This comes from charge re-distribution due to spin-orientation above $T_f$, and $T_N$, due to the changing $E_Q$ at various temperatures. Isomer shift value ($0.7mm/s{\leq}{\delta}{\leq}0.9mm/s$) shows that the charge states are ferrous ($Fe^{2+}$), for all temperature range. The Debye temperature for the octahedral site was found to be ${\Theta}_D=260K$.

The Open Loop Multiple Split Ring Resonator Based Voltage Controlled Oscillator in 0.13 um CMOS (개방 루프 다중 분할 링 공진기를 이용한 0.13 um 전압 제어 발진기 설계)

  • Kim, Hyoung-Jun;Choi, Jae-Won;Seo, Chul-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.2
    • /
    • pp.202-207
    • /
    • 2010
  • In this paper, a novel voltage-controlled oscillator(VCO) using the open loop multiple split ring resonator(OLMSRR) is presented for improving the phase noise, implemented in 130 nm CMOS technology. Compared with the conventional CMOS LC resonator, the proposed CMOS OLMSRR has the larger coupling coefficient value, which makes a higher Q-factor, and has improved the phase noise of the VCO. The proposed CMOS VCO based OLMSRR has the phase noise of -99.67 dBc/Hz @ 1 MHz in the oscillation frequency. Compared with the VCO using the conventional CMOS LC resonator and the proposed VCO using the CMOS OLMSRR structure has been improved in 7 dB. The prototype 24 GHz CMOS VCO is implemented in 130 nm CMOS and occupies a compact die area of $0.7\;mm{\times}0.9\;mm$.

3D-QSARs analyses for Tyrosinase Inhibitory Activity of 2-Phenyl-1,4-benzopyrone (Flavones) Analogues and Molecular Docking (2-Phenyl-1,4-benzopyrone 유도체 (Flavones)의 Tyrosinase 저해활성에 관한 3D-QSARs 분석과 분자도킹)

  • Park, Joon-Ho;Sung, Nack-Do
    • Journal of Applied Biological Chemistry
    • /
    • v.53 no.4
    • /
    • pp.225-231
    • /
    • 2010
  • To understand the inhibitory activity with changing hydroxyl substituents ($R_l-R_9$) of polyhydroxy substituted 2-phenyl-l,4-benzopyrone analogues (1-25) against tyrosinase (PDB ID: oxy-form; 1WX2), molecular docking and the three dimensional quantitative structure-activity relationships (3D-QSARs: Comparative molecular field analysis (CoMFA) & Comparative molecular similarity indices analysis (CoMSIA)) were studied quantitatively. The statistically best models were CoMFA 1 and CoMSIA 1 model from the results. The optimized CoMSIA 1 model with the sensitivity of the perturbation and the prediction produced ($dq^2'/dr_{yy'}^2$=1.009 & $q^2$=0.51l) by a progressive scrambling analysis were not dependent on chance correlation. The inhibitory activities with optimized CoMSIA 1 model were dependent upon electrostatic factor (51.4%) of substrate molecules. Contour mapping the 3D-QSAR models to the active site of tyrosinase provides new insight into the interaction between tyrosinase as receptor and 2-phenyl-l,4-benzopyrone analogues as inhibitor. Therefore, the results will he able to apply to the optimization of a new potent tyrosinase inhibitors.

Transient Absorption Spectra of Phenothiazine Derivative in the Vesicle System Containing Ru$^{2+}$ Complex as a Sensitizer

  • Park, Yong-Tae;Kim, Young-Doo;Burkhart, Richard D.;Caldwell, Norris J.
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.2
    • /
    • pp.84-87
    • /
    • 1988
  • The Photophysical and photochemical properties of Ruthenium bipyridine with two long hydrocarbon chains, $[Ru(bipy)_2(dhbipy)]^{2+}$ and transient phenothiazine derivative cation radical $(PTD^+)$ in the cationic vesicle were studied. Transient absorption spectra of cation radical of phenothiazine derivative in the vesicle system containing the $Ru^{2+}$ complex, $[Ru(bipy)_2(dhbipy)]^{2+}$, (1) as sensitizer and phenothiazine derivative as electron donor was observed by XeCl excimer laser photolysis system. Thus the excited ruthenium complex would be quenched by phenothiazine derivative(PTD) reductively in the vesicle system. The quenching rate constant($K_Q$) of $Ru^{2+}$ with two long hydrocarbon chains in the vesicle by PTD was $9.6{\times}10^8M^{-1}S^{-1}$. The absorption decay kinetics showed that lifetime of phenothiazine derivative cation radical is a value in the 4-8m sec range.

QSAR on the Inhibition Acticity of Flavopiridol Analogues against Breast Cancer MCF-7 (Flavopiridol 유도체에 의한 유방암 MCF-7 세포의 저해 활성에 관한 구조와 활성과의 관계)

  • Soung, Min-Gyu;Joo, Sung-Mo;Song, Ah-Reum;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.50 no.3
    • /
    • pp.147-153
    • /
    • 2007
  • To search for a molecular design of a new breast cancerous inhibitory active compound, 2D-QSAR and HQSAR between the substituents of flavopiridol analogues as substrates and their breast cancerous inhibitory activities against MCF-7 cell were analyzed and discussed quantitatively. It was found that the dispersion with molecule and steric hindrance with substituents will have a tremendous impact on the inhibitory activities from the 2D-QSAR model (1). Also, MR constant is better than that of MS constant as animportant factor. The inhibitory activities from 2D-QSAR model (2) were dependent upon the optimum MR constant (MR = 126 $Cm^3/mol$). Optimized HQSAR model (V) exhibited the best predictability of the inhibitory activities based on the cross-validated $r^2_{cv}$($q^2$= 0.583) and non-cross-validated conventional coefficient ($r^2_{ncv}$= 0.982). From the contribution maps, the inhibitory activity by the imino group on $C_9$ atom was higher than that of the hydroxyl group of $C_8$ atom on the A ring in molecule. Therefore, we can confirm that the dispersion by substituents in molecule is the most important factor in inhibitory activities against MCF-7 cell.