• Title/Summary/Keyword: D.B.H. analysis

Search Result 1,378, Processing Time 0.032 seconds

UBET Analysis and Model Test of the Forming Process of Magnetron Anode (마그네트론 양극 성형공정의 UBET해석 및 모형실험)

  • Jo, K.H.;Bae, W.B.;Yang, D.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.126-136
    • /
    • 1995
  • Copper magnetron anode of a microsave-over consists of an cylindrical outer-tube and various inner-vanes. The magnetron anode is produced by the complex processes; vane blanking, pipe cutting and silver-alloy brazing of vanes. Recently, the backward extrusion process for forming vanes has been developed to avoid the complex procedures. The developed process is analyzed by using upper-bound elemental technique (UBET). In the UBET analysis, the upper-bound load, the configuration and the vane-height of final extruded product are determined by minimizing the roral power consumption with repect to chosen parameters. To verify theoretical analysis, experiments have been carried out with pure plasticine billets at room temperature, using different web-thickness and number of vanes. The theoretical predictions both for forming load and vane-height are in reasonable agreement with the experimental results.

  • PDF

A Study on the Shape Correction of Stamped Parts by the Irradiation of Laser (레이저를 이용한 스탬핑 제품의 스프링백 형상교정에 관한 연구)

  • Shim, H.B.;Kim, D.W.
    • Transactions of Materials Processing
    • /
    • v.18 no.7
    • /
    • pp.519-530
    • /
    • 2009
  • The study is concerned with shape correction of stamped product using the laser irradiation. As a fundamental study, laser irradiation process has been analyzed through the thermo-mechanical FE analysis. For the purpose of validation, laser scanning experiment has been carried out also. Since the deformation mechanism involved in the laser scanning is extremely complicated due to the highly temperature dependent material properties, the determination of laser scanning pattern is not easy for the application of real stamped parts. A simplified method for the application of springback correction has been suggested with the thermo-mechanical FE analysis.

Finite Element Analysis of Porthole Extrusion Process for Al Suspension Arm (서스펜션 암의 포트홀 다이 압출공정 유한요소 해석)

  • Joe, Y.J.;Lee, S.K.;Kim, B.M.;Oh, K.H.;Park, S.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.247-250
    • /
    • 2006
  • The growing demand for more fuel-efficient vehicles to reduce energy consumption and air pollution is a challenge for the automotive industry. The characteristic properties of aluminum, high strengrth stiffness to weight ratio, good formability, good corrosion resistence, and recycling potential make it the ideal candidate to replace heavier materials in the car to respond to the weight resuction demand within the automotive industry. In this paper, A series of compression test was carried out to find the flow stress of A6082 at 300, 400 and $500^{\circ}C$, then we tried to estimate weldability, extrusion load and effective stress of die in the aluminum extrusion process through the 3D FE simulation at non-steady state for aluminum automotive parts.

  • PDF

PERFORMANCE ANALYSIS OF HOVERING UH-60A ROTOR BLADE (UH-60A 로터 블레이드의 정지비행 성능해석)

  • Park, Y.M.;Chang, B.H.;Chung, J.D.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.73-76
    • /
    • 2007
  • The present paper describes the results of performance analysis for UH-60A rotor blade in hover. For the numerical simulations, commercial CFD software, FLUENT was used with Spalart-Allmaras turbulence model. The flow solver was based on node based scheme and second order spatial accuracy options was used for simulations. For the enhancement of wake capturing capability, high resolution grid was used around tip vortex region. Granting that somewhat over prediction of thrust was observed near blade tip region, performance was well correlated with experimental data within 3% accuracy in the operating region. Finally it was shown that the present flow solver can be used for preliminary performance analysis tool for hovering helicopter rotor blades.

  • PDF

Accelerated Test Design for Crankshaft Reliability Estimation

  • Jung, D.H.;Pyun, Y.S.;Gafurov, A.;Chung, W.S.
    • International Journal of Reliability and Applications
    • /
    • v.10 no.2
    • /
    • pp.109-118
    • /
    • 2009
  • Crankshaft, the core element of the engine of a vehicle, transforms the translational motion generated by combustion to rotational motion. Its failure will cause serious damage to the engine so its reliability verification must be performed. In this study, the S-N data of the bending and torsion fatigue limits of a crankshaft are derived. To evaluate the reliability of the crankshaft, reliability verification and analysis are performed. For the purpose of further evaluation, the bending and torsion tests of the original crankshaft are carried out, and failure mode analysis is made. The appropriate number of samples, the applied load, and the test time are computed. On the basis of the test results, Weibull analysis for the shape and scale parameters of the crankshaft is estimated. Likewise, the $B_{10}$ life under 50% of the confidence level and the MTTF are exactly calculated, and the groundwork for improving the reliability of the crankshaft is laid.

  • PDF

Joint Design of Steel-Aluminum Power Steering Cylinder by using FE Analysis with Cohesive Zone Model (Cohesive Zone Model을 이용한 동력조향 유압실린더의 스틸-알루미늄 접착부 설계)

  • Lee, C.J.;Lee, S.K.;Ko, D.C.;Schafer, H.;Lee, J.M.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.18 no.5
    • /
    • pp.385-391
    • /
    • 2009
  • An adhesively bonded power steering cylinder with a steel tube and an aluminum bracket was developed to reduce the weight of steering systems. To achieve the joint strength between the steel tube and of the aluminum bracket, the shape aluminum bracket re-designed by using the FE-analysis. Fracture behavior of the adhesive layer was considered by a cohesive zone model(CZM), which is based on the two-parameter fracture phenomenon with critical stress and fracture toughness. From the result of FE-analysis with CZM, re-designed power steering cylinder satisfied the desired joint strength for axial and torsion modes. And its joint strength was verified by the fracture test in each mode.

A Kinematic Analysis on Piston Rod Mechanism in Swashplate Type Hydraulic Axial Piston Motor/Pump Using Constant Velocity Joint (등속조인트를 적용한 사판식 유압 모터/점프의 로드형 피스톤에 대한 운동해석)

  • Kim K.H.;Kim S.D.;Ham Y.B.;Lee J.C.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • Recently, swash plate type hydraulic axial piston motors/pumps are being extensively used in the world, because of simple design, light weight and effective cost. Structural problem of the swash plate type motor/pump is that tilting angle of swash plate should be limited to relatively small value and lateral farce on pistons has an undesirable effect in reciprocating motion. To solve these problems, piston rod mechanism, which is commonly used in bent axis type motor/pump, is considered to be applied to the swash plate type motor/pump. In this paper, kinematic analysis was done on the piston rod mechanism. A series of formula were derived and numerical calculations were done for a set of motor parameters.

  • PDF

Theoretical Studies of Hydrogen Bond Interactions in Fluoroacetic Acid Dimer

  • Chermahini, Alireza Najafi;Mahdavian, Mohsen;Teimouri, Abbas
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.941-948
    • /
    • 2010
  • Ab initio and density functional theory methods have been employed to study all theoretically possible conformers of fluoroacetic acid. Molecular geometries and energetic of cis and trans monomers and cis dimers in gaseous phase have been obtained using HF, B3LYP and MP2 levels of theory, implementing 6-311++G(d,p) basis set. It was found that cis rotamers are more stable. In addition, it was found that in comparison with acetic acid the strength of hydrogen bonding in fluoroacetic acid decreased. The infrared spectrum frequencies and the vibrational frequency shifts are reported. Natural population and atom in molecule analysis performed to predict electrostatic interactions in the cyclic H-bonded complexes and charges. The proton transfer reaction is studied and activation energy is compared with acetic acid proton transfer reaction.

Longitudinal and Flexural Vibration Analysis of a Beam Type Structure by Transfer Stiffness Coefficient Method (전달강성계수법에 의한 보형구조물의 종.굽힘진동해석)

  • Moon, D.H.;Choi, M.S.;Kim, Y.B.
    • Journal of Power System Engineering
    • /
    • v.2 no.1
    • /
    • pp.59-66
    • /
    • 1998
  • The authors have studied vibration analysis algorithm which was suitable to the personal computer. Recently, we presented the transfer stiffness coefficient method(TSCM). This method is based on the concept of the transfer of the nodal dynamic stiffness coefficients which are related to force and displacement vectors at each node. In this paper, we describes the general formulation for the longitudinal and flexural coupled vibration analysis of a beam type structure by the TSCM. And the superiority of the TSCM to the finite element method(FEM) in the computation accuracy, cost and convenience was confirmed by results of the numerical computation and experiment.

  • PDF

Effects of Processing Routes on the Deformation Behavior of an AZ61 Mg Alloy by Half Channel Angular Extrusion(HCAE) using 3D Finite Element Analysis (유한요소해석을 이용한 HCAE 공정의 가공 경로가 AZ61 마그네슘 합금의 변형 특성에 미치는 영향에 대한 연구)

  • Lee, S.I.;Yoon, J.H.;Kim, K.J.
    • Transactions of Materials Processing
    • /
    • v.23 no.3
    • /
    • pp.151-158
    • /
    • 2014
  • Half channel angular extrusion(HCAE) is the integration of equal channel angular extrusion(ECAE), which is a well-known severe plastic deformation(SPD) method, with conventional forward extrusion in order to increase the strain per pass and effectiveness of the grain refinement. In the current study, the effects of processing routes during HCAE(Routes A, B, and C) on the strain distribution of the specimens have been investigated for an AZ61 Mg alloy by using three-dimensional finite element analysis. Comparisons with the results from a multi-pass of ECAE are made.