• Title/Summary/Keyword: D-ribose

Search Result 107, Processing Time 0.03 seconds

Optimization of Culture Conditions for D-Ribose Production by Transketolase-Deficient Bacillus subtilis JY1

  • Park, Yong-Cheol;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.665-672
    • /
    • 2004
  • D-Ribose is a five-carbon sugar used for the commercial synthesis of riboflavin, antiviral agents, and flavor enhancers. Batch fermentations with transketolase-deficient B. subtilis JY1 were carried out to optimize the production of D-ribose from xylose. The best results for the fermentation were obtained with a temperature of $37^{\circ}C$ and an initial pH of 7.0. Among various sugars and sugar alcohols tested, glucose and sucrose were found to be the most effective for both cell growth and D-ribose production. The addition of 15 g/l xylose and 15 g/l glucose improved the fermentation performance, presumably due to the adequate supply of ATP in the xylose metabolism from D-xylulose to D-xylulose-5-phosphate. A batch culture in a 3.7-1 jar fermentor with 14.9 g/l xylose and 13.1 g/l glucose resulted in 10.1 g/l D-ribose concentration with a yield of 0.62 g D-ribose/g sugar consumed, and 0.25 g/l-h of productivity. Furthermore, the sugar utilization profile, indicating the simultaneous consumption of xylose and glucose, and respiratory parameters for the glucose and sucrose media suggested that the transketolase-deficient B. subtilis JY1 lost the glucose-specific enzyme II of the phosphoenolpyruvate transferase system.

Effects of D-ribose Supplementation on Run-to-exhaustion Time and Antioxidative Capacity under Sea Level or High Altitude Condition (D-라이보스 섭취가 해수면환경과 고지대환경에서의 운동지속능력 및 항산화능력에 미치는 영향)

  • Yoon, Jungwon;Lee, Shineon;Park, Hyon
    • Korean Journal of Exercise Nutrition
    • /
    • v.13 no.1
    • /
    • pp.45-50
    • /
    • 2009
  • This study evaluated the effects of D-ribose supplementation on exercise time in a hypoxic chamber. Eight healthy young males participated in experiments under all four different conditions; placebo+normoxic, placebo+hypoxic, ribose+normoxic, and ribose+hypoxic. Subjects took 1 g per 10 kg body weight of ribose dissolved in drinking water 30 minutes before and immediately before running. We observed the run-to-exhaustion time, the maximum heart rate, and the changing pattern of the heart rate during exercise. The longest running time was achieved when subjects ran under normoxic condition with ribose supplementation. The shortest running time occurred when subjects ran under hypoxic conditions without ribose supplementation. We measured MDA and GPx to determine any changes in oxidative stresses or antioxidative systems. MDA was affected by the environmental conditions and the running time. The activity of GPx showed a significant difference only with the different environmental conditions of exercise. The results of this study indicate that ribose can be considered a possible ergogenic during exercise in specific conditions, but more detailed and well-controlled studies are needed to make a definitive conclusion.

Effects of Oxygen Supply and Mixed Sugar Concentration on ${\small{D}}$-Ribose Production by a Transketolase-Deficient Bacillus subtilis SPK1

  • Park, Yong-Cheol;Lee, Hae-Jin;Kim, Chang Sup;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.560-564
    • /
    • 2013
  • ${\small{D}}$-Ribose is a value-added five-carbon sugar used for riboflavin production. To investigate the effects of oxygen supply and mixed sugar concentration on microbial production of ${\small{D}}$-ribose, a transketolase-deficient Bacillus subtilis SPK1 was cultured batch-wise using xylose and glucose. A change of agitation speed from 300 rpm to 600 rpm at 1 vvm of air supply increased both the xylose consumption rate and ${\small{D}}$-ribose production rate. Because the sum of the specific consumption rates for xylose and glucose was similar at all agitation speeds, metabolic preferences between xylose and glucose might depend on oxygen supply. Although B. subtilis SPK1 can take up xylose and glucose by the active transport mechanism, a high initial concentration of xylose and glucose was not beneficial for high ${\small{D}}$-ribose production.

Determination of Adsorption Isotherms and Separation of L-arabinose and D-ribose in Cation Exchange Chromatography and HPLC (양이온 교환 크로마토그래피와 HPLC에서의 L-arabinose와 D-ribose의 분리 및 등온 흡착곡선 결정)

  • Jeon, Young-Ju;Kim, In-Ho
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.31-36
    • /
    • 2008
  • The use of L-carbohydrates and their corresponding nucleosides in medicinal application has greatly increased. For example L-ribose has been much in demand as the starting material for curing hepatitis B. High performance liquid chromatography (HPLC) method was studied for the analysis of ribose and arabinose fractions from ion exchange chromatography (IEC). Dowex Monosphere 99 Ca/320 resin was packed in IEC to separate ribose and arabinose under various operating conditions. $NH_{2}$ and sugar HPLC columns were then used to analyze the fractions from the IEC column. Pulse input method (PIM) was also used to measure adsorption isotherms of ribose and arabinose in the Dowex column and HPLC columns. Experimental results and simulations by ASPEN chromatography were compared with fair agreement.

Substrate Variety of a Non-metal Dependent Tagatose-6-phosphate Isomerase from Staphylococcus aureus (Staphylococcus aureus 유래 비금속성 이성화효소인 Tagatose-6-phosphate Isomerase의 기질다양성)

  • Oh Deok-Kun;Ji Eun-Soo;Kwon Young-Deok;Kim Hye-Jung;Kim Pil
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.2
    • /
    • pp.106-111
    • /
    • 2005
  • To investigate the substrate variety of a putative non-metal dependent isomerase, the tagatose-6-phosphate isomerase (E.C. 5.3.1.26) structural genes (lacB; 510bp and lacA; 430bp) of Staphylococcus aureus were subcloned and co-expressed. Based on the substrate configuration, various aldoses were surveyed for substrate of ketose isomerization. Among the 10 aldoses tested, D-ribose and D-allose were isomerized by the enzyme. The subunit A and B showed more than $95\%$ activity for D-ribose and $75\%$ for D-allose in the presence of 1mM EDTA compared with non-EDTA conditions, which implying tagatose-6-phosphate isomerase is a non-metal dependent isomerase. Each of subunit A or subunit B alone showed no activity for any of the substrates tested. The affinity constant ($K_m$) of tagatose-6-phosphate isomerase against D-ribose and D-allose were 26 mM and 142 mM, respectively.

The Effects of D-Ribose Supplementation on the Production of Blood Fatigue Factors after Maximal Intensity Exercise (리보오스 보충이 최대강도 운동 후 혈중 피로물질 생성에 미치는 영향)

  • Lee, Yul-Hyo;Shin, Ki-Ok;Kim, Keun-Soo;Kim, Young-Il;Woo, Jin-Hee
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.729-733
    • /
    • 2011
  • The purpose of this study was to examine the effect of D-ribose supplementation on the changes of blood fatigue substances (lactate, ammonia, phosphate and hypoxanthine) after maximal exercise performance in college male students. The experimental trials of each subject were divided into the following conditions: placebo supplement trial and D-ribose supplement trial. The subjects exercised using a Concept II Indoor rowing ergometer for 2,000 m Single Skull event. The subjects ingested 200 mg/kg of D-ribose after breakfast, lunch, dinner, as well as thirty minutes before exercising, for six days. Blood fatigue substances were continuously measured before exercise, immediately after exercise, and thirty minutes after exercise. The results indicated a significant difference in blood phosphate and hypoxanthine levels between the two experimental trials in the 30 minute recovery period (p<0.05). However, there were no significant differences in blood lactate and phosphate levels between the two experimental trials. The results of our study suggest that D-ribose supplementation during maximal rowing exercise for 7~8 minutes may contribute to the improvement of metabolic responses as a beneficial ergogenic aid accelerating fatigue clearance.

Comparing the effects of intake of sugar containing different levels of D-ribose in sugar on glycemic index and blood glucose response in healthy adults (성인을 대상으로 D-리보오스 함유 비율을 달리한 설탕 섭취에 따른 Glycemic Index 및 혈당 반응 연구)

  • Kim, A-Reum;Lee, Jung-Sug;Nam, Hyekyoung;Kyung, Myungok;Seo, Sheungwoo;Chang, Moon-Jeong
    • Journal of Nutrition and Health
    • /
    • v.50 no.5
    • /
    • pp.426-436
    • /
    • 2017
  • Purpose: To compare the extent to which three different levels of D-ribose in sugar reduce the glycemic index (GI) and blood glucose response in healthy adults. Methods: Healthy adults (eight male and six female participants, n = 14) fasted for 14~16 h after eating the same dinner. Participants were then randomized to receive glucose, sucrose, sucrose containing 5% D-ribose (RB5), sucrose containing 10% D-ribose (RB10), or sucrose containing 14% D- ribose (RB14) every week on the same day for 10 weeks (repeating the sample twice). Blood samples were collected by finger prick before and 15, 30, 45, 60, 90, and 120 min after starting to eat. Results: We observed a decreased glycemic response to sucrose containing D-ribose. GIs for sucrose, RB5, RB10, and RB14 were 67.39, 67.07, 47.57, and 45.62, respectively. GI values for sucrose and RB5 were similar to those for foods with a medium GI, and GI values for RB10 and RB14 were similar to those for foods with a low GI. The postprandial maximum blood glucose rise (Cmax) with RB14 was the lowest among the test foods. Cmax values for RB10 and RB14 were significantly lower than that for sucrose. Conclusion: The results of this study suggest that sucrose containing D-ribose has an acute suppressive effect on GI and Cmax. In addition, D-ribose active elements in sugar may be effective in preventing blood glucose spikes induced by sucrose intake.

Amyloglucosidase Catalyzed Syntheses of Bakuchiol Glycosides in Supercritical Carbon Dioxide

  • Manohar, Balaraman;Divakar, Soundar;Sankar, Kadimi Udaya
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1760-1766
    • /
    • 2009
  • Enzymatic syntheses of water soluble Bakuchiol glycosides were carried out in di-isopropyl ether organic media using amyloglucosidase from Rhizopus mold. The reactions were carried out under conventional reflux conditions and in supercritical $CO_2$ atmospheric conditions. Out of the eleven carbohydrate molecules employed for the reaction, D-glucose, D-ribose and D-arabinose gave glycosides in yields of 9.0% to 51.4% under conventional reflux conditions. Under supercritical $CO_2$ atmosphere (100 bar pressure at 50 ${^{\circ}C}$), bakuchiol formed glycosides with Dglucose, D-galactose, D-mannose, D-fructose, D-ribose, D-arabinose, D-sorbitol and D-mannitol in yields ranging from 9% to 46.6%. Out of the bakuchiol glycosides prepared, 6-O-(6-D-fructofruranosyl)bakuchiol showed the best antioxidant (1.4 mM) and ACE inhibitory activities (0.64 mM).

Biotransformation of Fructose to Allose by a One-Pot Reaction Using Flavonifractor plautii ᴅ-Allulose 3-Epimerase and Clostridium thermocellum Ribose 5-Phosphate Isomerase

  • Lee, Tae-Eui;Shin, Kyung-Chul;Oh, Deok-Kun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.3
    • /
    • pp.418-424
    • /
    • 2018
  • ${\text\tiny{D}}-Allose$ is a potential medical sugar because it has anticancer, antihypertensive, antiinflammatory, antioxidative, and immunosuppressant activities. Allose production from fructose as a cheap substrate was performed by a one-pot reaction using Flavonifractor plautii ${\text\tiny{D}}-allulose$ 3-epimerase (FP-DAE) and Clostridium thermocellum ribose 5-phosphate isomerase (CT-RPI). The optimal reaction conditions for allose production were pH 7.5, $60^{\circ}C$, 0.1 g/l FP-DAE, 12 g/l CT-RPI, and 600 g/l fructose in the presence of 1 mM $Co^{2+}$. Under these optimized conditions, FP-DAE and CT-RPI produced 79 g/l allose for 2 h, with a conversion yield of 13%. This is the first biotransformation of fructose to allose by a two-enzyme system. The production of allose by a one-pot reaction using FP-DAE and CT-RPI was 1.3-fold higher than that by a two-step reaction using the two enzymes.