• Title/Summary/Keyword: D-limonene

Search Result 107, Processing Time 0.028 seconds

Antibacterial Activity of Essential Oils from Pinaceae Leaves Against Fish Pathogens (어병 세균에 대한 소나무과 잎 정유의 항세균 효과)

  • HAM, Youngseok;YANG, Jiyoon;CHOI, Won-Sil;AHN, Byoung-Jun;PARK, Mi-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.527-547
    • /
    • 2020
  • Fish pathogens cause not only economic damages to fish farming but also infectious pathogens known as a zoonotic agent. Since the continued use of antibiotics to control fish pathogens entails side effects, materials of natural origin need to be developed. The purpose of this study is to discover coniferous essential oils with excellent antibacterial effects in order to develop antibiotic alternatives. We have extracted essential oils using hydro-distillation from the leaves of Abies holophylla, Pinus thunbergii, Pinus parviflora, Tsuga sieboldii, and Pinus rigitaeda, which are all Pinaceae family. And, we have evaluated antibacterial activity with the extracted essential oils against Edwardsiella tarda, Photobacterium damselae, Streptococcus parauberis, and Lactococcus garvieae, which are fish pathogens. As a result, the essential oils from A. holophylla and P. thunbergii showed the selectively strong antibacterial activity against E. tarda and P. damselae, which are gram-negative bacteria. From GC-MS analysis, it was identified that main component of A. holophylla essential oils are (-)-bornyl acetate (29.45%), D-limonene (20.47%), and camphene (11.73%), and that of P. thunbergii essential oils is α-pinene (59.81%). In addition, we found three compounds: neryl acetate, (-)-borneol, and (-)-carveol, which are oxygenated monoterpenes. These exist in a very small amount but exhibit the same efficacy as essential oil. Therefore, we expect that A. holophylla and P. thunbergii essential oils having excellent growth inhibitory effect against gram-negative fish pathogens can be used as biological products such as feed additives and fishery products.

Studies on the Analysis of Special Components of Major Pine Needles for Searching of the New Functional Substances (I) - Analysis of Pectin, Tannin and Terpenoids - (신기능성 물질 탐색을 위한 침엽수잎의 특수성분 분석에 관한 연구 (I) - 펙틴, 탄닌, 테르페노이드의 분석 -)

  • Hwang, Byung-Ho;Lee, Hyun-Jong;Kang, Ha-Young;Liu, Shunxi;Cho, Jae-Hyun;Zhao, Julan
    • Journal of Forest and Environmental Science
    • /
    • v.13 no.1
    • /
    • pp.134-142
    • /
    • 1997
  • Pectin and tannin analysis were carried out to inverstigate any available components from Pinus densiflora, P. koraiensis, P. thunbergii and P. rigida. To analyze terpenoid components, the essential oils were extracted with steam distillation method from four kinds of pine needles. The essential oil was analyzed by GC and GC-MS spectroscopy. The results were summarized as follows: Pectin content was highest in P. koraiensis with 0.40%, and tannin content was highest in P. koraiensis with 1.05. Major components of P. densiflora needles were ${\alpha}$-pinene, ${\beta}$-caryophyllene, ${\Delta}^3$-carene and phytol. ${\alpha}$-Pinene, ${\Delta}^3$-carene, ${\beta}$-caryophyllene, germacrene D, and camphene were found major components in P. koraiensis. Major components of P. thunbergii needles were ${\beta}$-pinene, ${\alpha}$-pinene, ${\beta}$-caryophyllene and germacrene D. ${\beta}$-Pinene, ${\alpha}$-piene, humulene oxide and ${\alpha}$-elemene were major components in P. rigida. Sabinene and citronellol were infrequent components in P. koraiensis, and ${\alpha}$-pinene oxide was present only in P. rigida. ${\alpha}$-Pinene, limonene, and bornylacetate well known as the main components of green air bath were found in P. densiflora and P. koraiensis.

  • PDF

Composition and Cytotoxicity of Essential Oil Extracted by Steam Distillation from Horseweed (Erigeron canadensis L.) in Korea (수증기 증류로 추출한 망초(Erigeron canadensis L.) 정유의 성분 분석과 독성 평가)

  • Choi, Hae-Jin;Wang, Hai-Ying;Kim, Young-Nam;Heo, Su-Jeong;Kim, Nam-Kyung;Jeong, Mi-Soon;Park, Yu-Hwa;Kim, Song-Mun
    • Applied Biological Chemistry
    • /
    • v.51 no.1
    • /
    • pp.55-59
    • /
    • 2008
  • The composition of essential oil from the aerial part of Erigeron canadensis L. was analyzed by GC-MS. Thirty-one constituents were identified from the essential oil: eighteen hydrocarbons (91.99% of the total oil), two acetates (2.92%), three alcohols (3.59%), four ethers (0.49%), one aldehyde (0.05%), and three ketone (0.23%). Major constituents of the essential oil were D,L-limonene (68.25% of the total oil) and delta-3-carene (15.9%). The $IC_{50}$ value of the essential oil was 0.027 ${\mu}g$ $mg^{-1}$ in MTT assay using HaCaT keratinocyte cell line.

Analysis and Reproduction of Fragrance Components of Lavandula Angustifolia Flower and Essential Oil (라벤더 꽃과 에센셜 오일의 향기 성분 분석 및 재현)

  • Ko, Eun sung;Kim, Hyung mook;Kwak, Byeong mun;Lee, Mi Gi;Bin, Bum ho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.2
    • /
    • pp.93-98
    • /
    • 2021
  • This study aims to find a discriminatory way that can lower the dependence on imports of aroma essential oils and increase the value of herb plants that are growing in domestic demand and cultivation. To this end, through a study that analyzes and reproduces fragrance components without damaging the original material of domestically grown lavender flowers using the SPME method, we are trying to confirm the difference in fragrance composition from lavender essential oil and find the fragrance originality of domestically grown herb plants. A total of 38 kinds of lavender essential oils and 27 kinds of lavender flowers were analyzed as fragrance ingredients, Among them, the common ingredients were myrcene, d-limonene, 1,8-cineol, ocimene, p-cymene, α-terpinolene, camphor, linalool, linalyl acetate, bornyl acetate, 4-terpineol, and a-terpineol. In addition, among the fragrance components of the two samples, it was confirmed that the type and content of allergens of domestically cultivated lanvender flowers were low. As a result of the sensuality evaluation of 15 panels, domestic cultivated lavender flower reproduction scent was higher in favor of lavender essential oil, which has been used in the industry until now. It is also believed that lavender fragrance, which lowers the content of allergy-causing ingredients, can expand industrialization.

A study on antioxidant and anti-inflammatory effects of domestic blended essential oils (국내산 블렌딩 정유의 항산화 및 항염 효과 연구)

  • Jung, Sook Heui;Lee, Eun Kyung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.1370-1382
    • /
    • 2021
  • Previous studies have been conducted on domestic materials as a single extract. Research on complex mixtures for maximizing plant characteristics by individual extraction and potential interference with effects is insufficient. Therefore, this study confirmed the GC-MSD according to the extraction of essential oils for Agastache rugosa O. Kuntze(AR), Pinus densiflora Sieb. et Zuccarini(PD), Curcuma longa, Curcuma domestica(CC), Zingiber officinale Roscoe(ZR), Foeniculum vulgare Miller(FV), and Citrus medica L. var. sarcodactylis Swingle(CS). The cytotoxicity, antioxidant, and anti-inflammatory properties of the blending oil were confirmed to confirm its potential as a cosmetic material. As a result of analyzing GC-MSD aroma components, the main components were estragole of AR, à-Pinene for PD, Zingiberene for CC and ZR, Anethole from FV, and D-Limonene for CS. At a concentration of 100 uL/mL with no confirmed cytotoxicity, NO production was inhibited by 70.62%, DPPH radical scavenging activity was 64.03%, and ABTS radical scavenging activity was 89.55%. Through this, blended essential oil suggests the possibility of useful application as a raw material with antioxidant and anti-inflammatory effects in the cosmetic and food industries.

Identification of Proapoptopic, Anti-Inflammatory, Anti-Proliferative, Anti-Invasive and Anti-Angiogenic Targets of Essential Oils in Cardamom by Dual Reverse Virtual Screening and Binding Pose Analysis

  • Bhattacharjee, Biplab;Chatterjee, Jhinuk
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3735-3742
    • /
    • 2013
  • Background: Cardamom (Elettaria cardamom), also known as "Queen of Spices", has been traditionally used as a culinary ingredient due to its pleasant aroma and taste. In addition to this role, studies on cardamom have demonstrated cancer chemopreventive potential in in vitro and in vivo systems. Nevertheless, the precise poly-pharmacological nature of naturally occurring chemo-preventive compounds in cardamom has still not been fully demystified. Methods:In this study, an effort has been made to identify the proapoptopic, anti-inflammatory, anti-proliferative, anti-invasive and anti-angiogenic targets of Cardamom's bioactive principles (eucalyptol, alpha-pinene, beta-pinene, d-limonene and geraniol) by employing a dual reverse virtual screening protocol. Experimentally proven target information of the bioactive principles was annotated from bioassay databases and compared with the virtually screened set of targets to evaluate the reliability of the computational identification. To study the molecular interaction pattern of the anti-tumor action, molecular docking simulation was performed with Auto Dock Pyrx. Interaction studies of binding pose of eucalyptol with Caspase 3 were conducted to obtain an insight into the interacting amino acids and their inter-molecular bondings. Results:A prioritized list of target proteins associated with multiple forms of cancer and ranked by their Fit Score (Pharm Mapper) and descending 3D score (Reverse Screen 3D) were obtained from the two independent inverse screening platforms. Molecular docking studies exploring the bioactive principle targeted action revealed that H- bonds and electrostatic interactions forms the chief contributing factor in inter-molecular interactions associated with anti-tumor activity. Eucalyptol binds to the Caspase 3 with a specific framework that is well-suited for nucleophilic attacks by polar residues inside the Caspase 3 catalytic site. Conclusion:This study revealed vital information about the poly-pharmacological anti-tumor mode-of-action of essential oils in cardamom. In addition, a probabilistic set of anti-tumor targets for cardamom was generated, which can be further confirmed by in vivo and in vitro experiments.

Solvent Extracted Volatile Components of Mushroom Mycelia Cultivated with Citrus Juice Processing Wastes (감귤 주스 착즙박을 이용하여 재배된 버섯균사체의 용매추출에 의한 휘발성 성분)

  • Lee, Chang-Hwan;Yang, Min-Ho;Park, Seung-Rim;Kang, Young-Joo
    • Food Science and Preservation
    • /
    • v.14 no.4
    • /
    • pp.351-355
    • /
    • 2007
  • Solvent-extracted volatile components from dry powder prepared from Citrus unshiu products such as immature Citrus unshiu (PCU), mature Citrus unshiu (MCU), Citrus unshiu peel (CUP), and citrus juice processing wastes (CJPW), were examined. Also, solvent-extracted volatile components from mushroom mycelia of Pycnoporus coccineus (PC), Lentinus edodes (LE), Pleurotus eryngii (PE), Hericium coralloides (HC), Panellus serotinus (PS), and Ganoderma lucidum(GL), all cultivated using citrus pulp solid media, were assayed. Twenty-nine volatile components were identified in dry powder prepared Citrus unshiu and 18 volatile components were characterized from mushroom mycelia. Of these, ${\beta}-elemene$, germacrene-D, and ${\delta}-cadinene$, were derived from CJPW, but caryophyllene, hexadecanoic acid, decanoic acid, and tetradecanoic acid were synthesized by mushroom mycelia.

Antioxidant, Anti-inflammatory and Anti-allergenic Effects of Citrus Junos seed Oil and its Human Skin Protection (유자씨 오일의 항산화, 항염, 항알러지 효과 및 인체 피부보호 효과에 대한 연구)

  • Ko, Eun Ah;Nam, Seung-Hee;Jeong, Hana;Kim, Bo Yun;Kwak, Sang Hwa;Kim, Sunyoung;Hong, In Ki;Kang, Hakhee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.3
    • /
    • pp.283-294
    • /
    • 2020
  • In this study, in order to increase the utilization of Citrus junos seeds, which account for 13% of the weight ratio of Citrus junos ripened fruit, but are mostly discarded and not utilized, the efficacy of skin beauty of Citrus junos seed oil extracted by cold pressing was studied. Citrus junos seed oil was found to contain approximately 74% of unsaturated fatty acids consisting mainly of oleic acid and linoleic acid, and limonene, which is mainly contained in Citrus junos peel, contained a very low content of about 0.0187%. As a result of evaluating the DPPH radical scavenging activity of Citrus junos seed oil, 26% of DPPH radical scavenging ability was confirmed at 5% concentration of Citrus junos seed oil. To confirm the anti-inflammatory effect, as a result of testing RAW 264.7 cytotoxicity test and NO production for Citrus junos seed oil, NO production was suppressed by 53% at a concentration of 0.05% that does not show cytotoxicity. In addition, in the RBL-2H3 cytotoxicity and β-hexosaminidase release inhibitory efficacy test for anti-allergic efficacy confirmation, it was confirmed that β-hexosaminidas release was suppressed by 26% at a concentration of 0.05% that did not show cytotoxicity. Lastly, in the human skin application test result of O/W emulsion containing 5% of Citrus junos seed oil, it showed higher skin moisturizing effect than the control emulsion containing the same amount of caprylic/capric triglyceride. Therefore, it is thought that Citrus junos seed oil might be used as a excellent skin care material.

Comparative Analyses of the Flavors from Hallabong (Citrus sphaerocarpa) with Lemon, Orange and Grapefruit by SPTE and HS-SPME Combined with GC-MS

  • Yoo, Zoo-Won;Kim, Nam-Sun;Lee, Dong-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.271-279
    • /
    • 2004
  • The aroma component of Hallabong peel has been characterized by GC-MS with two different extraction techniques: solid-phase trapping solvent extraction (SPTE) and headspace solid-phase microextraction (HSSPME). Aroma components emitted from Hallabong peel were compared with those of other citrus varieties: lemon, orange and grapefruit by SPTE and GC-MS. d-Limonene (96.98%) in Hallabong was the main component, and relatively higher peaks of cis- ${\beta}$-ocimene, valencene and -farnesene were observed. Other volatile aromas, such as sabinene, isothujol and ${\delta}$-elemene were observed as small peaks. Also, principal components analysis was employed to distinguish citrus aromas based on their chromatographic data. For HSSPME, the fiber efficiency was evaluated by comparing the partition coefficient ($K_{gs}$Kgs) between the HS gaseous phase and HS-SPME fiber coating, and the relative concentration factors (CF) of the five characteristic compounds of the four citrus varieties. 50/30 ${\mu}$m DVB/CAR/PDMS fiber was verified as the best choice among the four fibers evaluated for all the samples.

Effect of elevated atmospheric carbon dioxide on the allelopathic potential of common ragweed

  • Bae, Jichul;Byun, Chaeho;Ahn, Yun Gyong;Choi, Jung Hyun;Lee, Dowon;Kang, Hojeong
    • Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.212-218
    • /
    • 2019
  • Background: Allelopathy has been suggested as one potential mechanism facilitating the successful colonisation and expansion of invasive plants. The impacts of the ongoing elevation in atmospheric carbon dioxide (CO2) on the production of allelochemicals by invasive species are of great importance because they play a potential role in promoting biological invasion at the global scale. Common ragweed (Ambrosia artemisiifolia var. elatior), one of the most notorious invasive exotic plant species, was used to assess changes in foliar mono- and sesquiterpene production in response to CO2 elevation (389.12 ± 2.55 vs. 802.08 ± 2.69 ppm). Results: The plant growth of common ragweed significantly increased in elevated CO2. The major monoterpenes in the essential oil extracted from common ragweed leaves were β-myrcene, DL-limonene and 1,3,6-octatriene, and the major sesquiterpenes were β-caryophyllene and germacrene-D. The concentrations of 1,3,6-octatriene (258%) and β-caryophyllene (421%) significantly increased with CO2 elevation. Conclusions: These findings improve our understanding of how allelochemicals in common ragweed respond to CO2 elevation.