• Title/Summary/Keyword: D-axis control

Search Result 429, Processing Time 0.028 seconds

The Effect of Barrel Vibration Intensity to the Plating Thickness Distribution

  • Lee, Jun-Ho;Roselle D. Llido
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 1999.10a
    • /
    • pp.15-15
    • /
    • 1999
  • In chip plating, several parameters must be taken into consideration. Current density, solution concentration, pH, solution temperature, components volume, chip and media ratio, barrel geometrical shape were most likely found to have an effect to the process yields. The 3 types of barrels utilized in chip plating industry are the conventional rotating barrel. vibrational barrel (vibarrel), and the centrifugal type. Conventional rotating barrel is a close type and is commonly used. The components inside the barrel are circulated by the barrel's rotation at a horizontal axis. Process yield has known to have higher thickness deviation. The vibrational barrel is an open type which offers a wide exposure to electrolyte resulting to a stable thickness deviation. It rotates in a vertical axis coupled with multi-vibration action to facilitate mixed up and easy transportation of components, The centrifugal barrel has its plated work centrifugally compacted against the cathode ring for superior electrical contact with simultaneous rotary motion. This experiment has determined the effect of barrel vibration intensity to the plating thickness distribution. The procedures carried out in the experiment involved the overall plating process., cleaning, rinse, Nickel plating, Tin-Lead plating. Plating time was adjusted to meet the required specification. All other parameters were maintained constant. Two trials were performed to confirm the consistency of the result. The thickness data of the experiment conducted showed that the average mean value obtained from higher vibrational intensity is nearer to the standard mean. The distribution curve shown has a narrower specification limits and it has a reduced variation around the target value, Generally, intensity control in vi-barrel facilitates mixed up and easy transportation of components, However, it is desirable to maintain an optimum vibration intensity to prevent solution intrusion into the chips' internal electrode. A cathodic reaction can occur in the interface of the external and internal electrode. $2HD{\;}+{\;}e{\;}{\rightarrow}20H{\;}+{\;}H_2$ Hydrogen can penetrate into the body and create pressure which can cause cracks. At high intensity, the chip's motion becomes stronger, its contact between each other is delayed and so plating action is being controlled. However, the strong impact created by its collision can damage the external electrode's structure thereby resulting to bad plating condition. 1 lot of chip was divided into two equal partion. Each portion was loaded to the same barrel one after the other. Nickel plating and tin-lead plating was performed in the same station. Portion A maintained the normal barrel vibration intensity and portion B vibration intensity was increased two steps higher. All other parameters, current, solution condition were maintained constant. Generally, plating method find procedures were carried out in a best way to maintained the best plating condition. After plating, samples were taken out from each portion. molded and polished. Plating thickness was investigated for both. To check consistency of results. 2nd trial was done now using different lot of another characteristics.

  • PDF

Development of the Balance Chair for Improving Postural Control Ability & Pelvic Correction (골반교정 및 자세균형능력 증진을 위한 균형의자 개발)

  • Oh, Seung-Yong;Shin, Sun-Hye;Kang, Seung-Rok;Hong, Chul-Un;Kwon, Tae-Kyu
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.3
    • /
    • pp.271-277
    • /
    • 2017
  • The purpose of this study was to develop a balance chair for improving pelvic correction and postural balance through postural balance training using tactile feedback by a vibration motor provided in real time according to the user's attitude. We built a body frame using mono cast(MC) Nylon, Touch thin film transistor(TFT) for user interface, a main control module using Arduino, a 9-axis acceleration sensor for user's posture determination, and a vibration module for tactile feedback. The prototype of the Balance Chair which surrounds the outside was made with cushion for sitting conformability. In order to verify the effectiveness of the postural balance training system using the built prototype, the muscle activity (% MVIC) of the left and right iliocostalis lumborum those are the main muscles of the spinal movement was measured with ten female subjects. And the balance ability before and after training was measured using Spine Balance 3D, a posture balance ability evaluation device. The muscular activities of the left and right iliocostalis lumborum showed the balance activation according to vibration feedback during exercise protocol and postural balance improved after balance exercise training using balance chair. This study could be apply to use the fundamental research for developing the various postural balance product.

Characteristic Analysis of Flexibility and Muscle Strength according to Exercise using Lumbar Strengthen Exercise Instrument (요추강화 운동기기의 훈련을 통한 유연성 및 근력 특성 분석)

  • Kang, S.R.;Kim, K.;Jeong, G.Y.;Moon, D.A.;Kwon, T.K.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.4 no.1
    • /
    • pp.53-61
    • /
    • 2010
  • In this paper, We investigated the characteristic analysis of flexibility and muscle strength for exercise to verify capacity in rehabilitation exercise of lumbar using lumbar strengthen exercise instrument. We have experiment in 20th years man and woman who are 20 subject with no medical history, we divided subjects into control group with no exercise and training group with lumbar strengthen exercise. We used Hi-Spine(Medicalscience.korea) also, provided exercise 40 minute a day, three days a week and progressed total four weeks. Moreover in our experiment, subjects exercised four postural position as lay down, sit, stand and stretch each ten minute. We measured trunk extension backward, trunk flexion forward, evaluation of based physical fitness and lumbar joint torque. The reults have shown that there more improved all for flexibility, based physical fitness and lumbar joint torque in training group than control group. We indicated that by rotating 3-D axis movement flatform of exercise instrument, muscle spindle in subject have been stimulated and these rotation direction and angle caused muscle tonus and contraction that makes muscle, flexibility and based physical fitness improve more. Our study can be used rehabilitation exercise program to aged people and patient with lumbar injury.

Development of Smart Driving System Using iPod and Its Performance Evaluation for People with Severe Physical Disabilities in the Driving Simulator

  • Jung, Woo-Chul;Kim, Yong-Chul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.5
    • /
    • pp.637-646
    • /
    • 2012
  • Objective: The aim of this study was to develop the adaptive device for severe physical disabilities using smart device in the driving simulator and its performance evaluation. Development of appropriate driving adaptive device for the people with serious physical limitation could contribute to maintain their community mobility. Background: There is lack of adaptive driving devices for the people with disabilities in Korea. However, if smart device systems like iPod and iPhone are used for driving a car, the people with serious physical limitations can improve their community mobility. Method: Both gyroscope and accelerometer from iPod were used to measure the tilted angle of the smart device for driving. Customized Labview program was also used to control three axis motors for steering wheel, accelerator and brake pedals. Thirteen subjects were involved in the experiment for performance evaluation of smart device in simulator. Five subjects had driver licenses. Another four subjects did not have driver licenses. Others were people with disabilities. Results: Average driving score of the normal group with driver license in the simulator increased 46.6% compared with the normal group without driver license and increased 30.4% compared with the disabled group(p<0.01). There was no significant difference in the average driving score between normal group without driver license and disabled group(p>0.05). Conclusion: The normal group with driver license showed significantly higher driving score than other groups. The normal group without driver license and disabled group could improve their driving skills with training in simulator. Application: If follow-up studies would be continued and applied in adapted vehicle for on road environment, many people with more severe disabilities could drive and improve the quality of life.

Study on the Atomization Characteristics of a Counter-swirling Two-phase Atomizer with Variations of Swirl angle (역선회 이류체 미립화기의 선회각 변화에 따른 미립화 특성연구)

  • Kim, N.H.;Lee, S.G.;Ha, M.H.;Rho, B.J.;Kang, S.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.125-130
    • /
    • 2001
  • Experimental and analytical researches have been conducted on the twin-fluid atomizers for better droplet breakup during the past decades. But, the studies on the disintegration mechanism still present a great challenge to understand the drop behavior and breakup structure. In an effort to describe the aerodynamic behavior of the sprays issuing from the internal mixing counter-swirling nozzle, the spatial distribution of axial (U) radial (V) and tangential (W) components of droplet velocities are investigated across the radial distance at several axial locations of Z=30, 50, 80, 120 and 170mm, respectively. Experiments were conducted for the liquid flow rates which was kept constant at 7.95 g/s and the air injection pressures were varied from 20 kPa to 140 kPa. Counter-swirling internal mixing nozzles manufactured at angles of $15^{\circ},\;30^{\circ},\;45^{\circ}$ and $60^{\circ}$ the central axis with axi-symmetric tangential-drilled holes was considered. The distributions of velocities and turbulence intensities are comparatively analyzed. PDPA is installed to specify spray flows, which have been conducted along the axial downstream distance from the nozzle exit. Ten thousand of sampling data was collected at each point with time limits of 30 second. 3-D automatic traversing system is used to control the exact measurement. It is observed that the sprays with all swirl angle have the maximum SMD for on air injection pressure of 20 kPa and 140 kPa with centerline, respectively. The nozzle with swirl angle of $60^{\circ}$ has vest performance.

  • PDF

Application Status and Prospects of CNC-Based Technologies in Gas Turbine Industry (가스터빈 산업에서의 CNC 기반기술 응용현황 및 전망)

  • Kang, Sin-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.3
    • /
    • pp.331-336
    • /
    • 2011
  • The three-dimensional complex curvature of the airfoil complicates the manufacture and repair of gas-turbine components. As a result of the developments in computer technology since the early 1990s, CNC-based technologies for machine tools and related programs have been increasingly applied in the gas turbine industry. In particular, fiveaxis simultaneous machines with adaptive functions have proven its excellent flexibility and productivity due to the capability in determining the 3D data from the unknown curvature. A well-organized robot system with eight-axis simultaneous control can lead to powerful standardization and high productivity. We summarize and review CNC technologies and their applications in the gas turbine industry, with a discussion of the manufacture and repair of gas turbine parts.

Microstructure Analysis of Y-Ba-Cu-O thin Films Grown on STO Substrates with Controlled ZnO Nanorods (ZnO 나노막대가 형성된 STO기판에 증착한 Y-Ba-Cu-O 박막의 미세구조 분석)

  • Oh, S.K.;Jang, G.E.;Tran, H.D.;Kang, B.W.;Kim, K.W.;Lee, C.Y.;Hyun, O.B.
    • Progress in Superconductivity
    • /
    • v.11 no.1
    • /
    • pp.47-51
    • /
    • 2009
  • For many large-scale applications of high-temperature superconducting materials, large critical current density ($J_c$) in high applied magnetic fields are required. A number of methods have been reported to introduce artificial pinning centers in $YBa_2Cu_3O_{7-{\delta}}$ films for enhancement of their $J_c$. We studied the microstructures and characteristic of $YBa_2Cu_3O_{7-{\delta}}$ films fabricated on $SrTiO_3$ (100) substrates with ZnO nanorods as pinning centers. Au catalyst nanoparticles were synthesized on STO substrates with self assembled monolayer to control the number of ZnO nanorods. The density of Au nanoparticles is approximately $240{\sim}260{\mu}m^{-2}$ with diameters of $41{\sim}49nm$. ZnO nanorods were grown on STO by hot-walled PLD with Au nanoparticles. Typical size of ZnO nanorod was around 179 nm in diameter and $2{\sim}6{\mu}m$ in length respectively. YBCO films deposited directly on STO substrates show the c-axis orientation, while YBCO films with ZnO nanorods exhibit any mixed phases without any typical crystal orientation.

  • PDF

Stiffness Analysis of a Low-DOF Parallel Manipulator including the Elastic Deformations of Both Joints and Links (ICCAS 2005)

  • Kim, Han-Sung;Shin, Chang-Rok;Kyung, Jin-Ho;Ha, Young-Ho;Yu, Han-Sik;Shim, Poong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.631-637
    • /
    • 2005
  • This paper presents a stiffness analysis method for a low-DOF parallel manipulator, which takes into account of elastic deformations of joints and links. A low-DOF parallel manipulator is defined as a spatial parallel manipulator which has less than six degrees of freedom. Differently from the case of a 6-DOF parallel manipulator, the serial chains in a low-DOF parallel manipulator are subject to constraint forces as well as actuation forces. The reaction forces due to actuations and constraints in each limb can be determined by making use of the theory of reciprocal screws. It is shown that the stiffness model of an F-DOF parallel manipulator consists of F springs related to the reciprocal screws of actuations and 6-F springs related to the reciprocal screws of constraints, which connect the moving platform to the fixed base in parallel. The $6{times}6$ stiffness matrix is derived, which is the sum of the stiffness matrices of actuations and constraints. The six spring constants can be precisely determined by modeling the compliance of joints and links in a serial chain as follows; the link can be considered as an Euler beam and the stiffness matrix of rotational or prismatic joint can be modeled as a $6{times}6$ diagonal matrix, where one diagonal element about the rotation axis or along the sliding direction is zero. By summing the elastic deformations in joints and links, the compliance matrix of a serial chain is obtained. Finally, applying the reciprocal screws to the compliance matrix of a serial chain, the compliance values of springs can be determined. As an example of explaining the procedure, the stiffness of the Tricept parallel manipulator has been analyzed.

  • PDF

The Kinematic Analysis of the Last Stride landing and Release Phase in the Women Javelin (여자 창던지기 도움닫기 최종 1보 착지와 릴리즈 국면의 운동학적 분석)

  • Hong, Soon-Mo;Lee, Young-Sun;Kim, Tea-Sam
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.1
    • /
    • pp.51-63
    • /
    • 2004
  • The purpose of this study was to investigate a three dimensional kinematic variables about the last stride and the release phase of the throwing technique for female javelin throwers. For the motion analysis, Six female javelin throwers were used as subjects. Three-dimensional coordinates were collected using the Kwon3D Motion Analysis Package Version 2.1 Program. Two S-VHS Video Cameras were used to record the locations and orientations of control object and the performances of the subjects at a frequency of 6.0 HZ. After the kinematic variables such as the time, the distance, the velocity, and the angle were analyzed about the last stride and release phase, the followings were achieved; 1. For the effectively javelin throwing, the subjects appeared to do long the approach time in the phasel of landing phase, and short the delivery time in release phase 2. In the release event, the other subjects except for subject A appeared to throwing in the lower condition than the height of themselves. This result showed to slow the projecion velocity. 3. For increase the projection vcelocity of the upper extremity joint in the release event, it appeared to do extend rather the shoulder angle than increase the extension of elbow joint. 4. The body of COG angle showed to gradually increase nearly at the vertical axis in the release event. But the front lean angle of trunk showed a small angle compare to increase of the body of COG angle. Therefore for the effectively momentum transmission of the whole body in the javelin, the front and back lean angle of trunk appeared to do fastly transfer the angle displacement in the arch posture or the crescent condition during the deliverly motion of the release phase.

The Effect of Forward Head Posture Correctional Device During Computer Work (컴퓨터 작업 시 전방머리자세 교정장치의 효과)

  • Yi, Chung-Hwi;Yoo, Won-Gyu;Kim, Min-Hee
    • Physical Therapy Korea
    • /
    • v.13 no.1
    • /
    • pp.9-15
    • /
    • 2006
  • Work-related musculoskeletal disorder has been associated with long hours of computer work and prolonged periods of static posture. In clinical settings, postural correction is a common treatment approach for individuals with neck, shoulder, and back pain. This study was designed to identify the effect of Forward Head Posture Correctional Device during computer work. Twelve healthy adults (mean age, 27.4 yrs; mean height, 165.0cm mean weight, 65.8 kg) participated in the study. They had no medical history of neurological or surgical problems with their upper extremity. The subjects were asked to perform Head Forward Posture under the guidance of physical therapists and the measured angles were analyzed using a 3-D motion analysis system. Markers were placed on the C7 spinous process, tragus of the ear and forward head angle was between the line from the tragus to the C7 line and the Y-axis at the C7. The statistical significance of difference between, "without" and "with" correctional device was tested by paired t-test. A level of significance was set at ${\alpha}$=.05. In comparison of the computer work between "without" and "with" correctional device, Forward Head Angle was showed significant difference (p<.05). In conclusion, the range of Forward Head Angle was significantly decreased during computer work with the correctional device. Further research is needed to understand the nature of motor control problems in deep muscles in patients with neck, shoulder, and back pain.

  • PDF