• Title/Summary/Keyword: D-axis control

Search Result 429, Processing Time 0.032 seconds

The Controller Design of the Permanent Magnet Synchronous Drive Using a Inverter with Phase Compensator (위상보상기를 가진 인버터로 구동되는 영구자석형 동기전동기의 제어기 설계)

  • 유정웅;우광준
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.3
    • /
    • pp.146-154
    • /
    • 1988
  • The computer simulation of speed and phase control system has been carried out in this study. The load of permanent magnet type synchronous motor is not constant in this system. The cost function method has been used in obtaining the optimal gain of PI controller and the rotor position angle of phase controller has been compensated depending on the load and speed variation. This analysis also shows that the current of d-axis component is zero under the variable a load conditions and the torque per unit current can be maximized.

  • PDF

Development of Digital 3D Real Object Duplication System and Process Technology (디지털 3차원 실물복제기 시스템 및 공정기술 개발)

  • Lee Won-Hee;Ahn Young-Jin;Jang Min-Ho;Choi Kyung-Hyun;Kim Dong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.183-190
    • /
    • 2006
  • Digital 3D Real Object Duplication System (RODS) consists of 3D Scanner and Solid Freeform Fabrication System (SFFS). It is a device to make three-dimensional objects directly from the drawing or the scanning data. In this research, we developed an office type SFFS based on Three Dimensional Printing Process and an industrial SFFS using Dual Laser. An office type SFFS applied sliding mode control with sliding perturbation observer (SMCSPO) algorithm for control of this system. And we measured process variables about droplet diameter measurement and powder bed formation etc. through experiments. In case of industrial type SFFS, in order to develop more elaborate and speedy system for large objects than existing SLS process, this study applies a new Selective Dual-Laser Sintering (SDLS) process and 3-axis Dynamic Focusing Scanner for scanning large area instead of the existing f lens. In this process, the temperature has a great influence on sintering of the polymer. Also the laser parameters are considered like that laser beam power, scan speed, and scan spacing. Now, this study is in progress to evaluate the effect of experimental parameters on the sintering process.

Development of a Multi-nozzle Bioprinting System for 3D Scaffold Fabrication (3차원 지지체 제작을 위한 다중 분사체 노즐 바이오프린팅 시스템 개발)

  • Park, Sanghoon;Kim, Seongjun;Song, Seung-Joon;Choi, Jaesoon
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.271-275
    • /
    • 2015
  • The aim of this study was to develop a multi-nozzle based bioprinting system for fabrication of three-dimensional (3D) biological structure. In this study, a thermoplastic biomaterial that has relatively high mechanical stability, polycaprolactone (PCL) was used to make the 3D structure. A multi-nozzle bioprinting system was designed to dispense thermoplastic biomaterial and hydrogel simultaneously. The system that consists of 3-axes of x-y-z motion control stage and a compartment for injection syringe control mounted on the stage has been developed. Also, it has 1-axis actuator for position change of nozzle. The controllability of the printed line width with PCL was tested as a representative performance index.

Modelling and experimental investigations on stepped beam with cavity for energy harvesting

  • Reddya, A. Rami;Umapathy, M.;Ezhilarasib, D.;Uma, G.
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.623-640
    • /
    • 2015
  • This paper presents techniques to harvest higher voltage from piezoelectric cantilever energy harvester by structural alteration. Three different energy harvesting structures are considered namely, stepped cantilever beam, stepped cantilever beam with rectangular and trapezoidal cavity. The analytical model of three energy harvesting structures are developed using Euler-Bernoulli beam theory. The thickness, position of the rectangular cavity and the taper angle of the trapezoidal cavity is found to shift the neutral axis away from the surface of the piezoelectric element which in turn increases the generated voltage. The performance of the energy harvesters is evaluated experimentally and is compared with regular piezoelectric cantilever energy harvester. The analytical and experimental investigations reveal that, the proposed energy harvesting structures generate higher output voltage as compared to the regular piezoelectric cantilever energy harvesting structure. This work suggests that through simple structural modifications higher energy can be harvested from the widely reported piezoelectric cantilever energy harvester.

Vector Control Simulation of Single Sided Linear Induction Motor (편측형 선형유도전동기의 벡터제어 시뮬레이션)

  • Chung Byung-Ho;Lim Hong-Woo;Choi Youn-Ok;Cho Geum-Bae;Baek Hyung-Lae;Oh Geum-Gon
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.209-212
    • /
    • 2002
  • LIM have mainly different point considering rotary induction motor, that is end effect. In this paper described that, end effect, adding to the rotary induction motor, They can be designed because of affects magnetizing inductance and series resistance in the d-axis circuit. After LIM modeling, using SVPWM, apply to vector control this model. We can verify feasibility of field onented control technology can control speed by simulation.

  • PDF

Nonlinear Power Control of Three Phase PWM Converter (3상 PWM 컨버터의 비선형 전력 제어)

  • Choi, Hyun-Sung;Kang, Jun-Koo;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1892-1895
    • /
    • 1998
  • In this paper, a new 3-phase PWM converter power control algorithm is proposed using feedback linearization for the regulation of the active and reactive power demanded by load side. The direct power control can be realized through the proposed control scheme, cancelling out d-q axis coupling terms and nonlinear effects between inputs and states. The actual experimental results prove the feasibility of the proposed nonlinear power controller.

  • PDF

A study on the feedback linearization for Induction Motor (IM의 궤환 선형화에 대한 연구)

  • Lim, Jae-Hun;Jang, Ki-Yeol;Park, Seung-Kyu;Ahn, Ho-Goon;Kwak, Gun-Pyung
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1650-1651
    • /
    • 2007
  • This paper presents a novel nonlinear speed control strategy for induction motor utilizing exact feedback linearization with states feedback. The speed and flux control loops utilize nonlinear feedback which eliminates the need for tuning, while ordinary proportional-integral controllers are used to control the stator current of d-axis the speed. The control scheme is derived in rotor field coordinates and employs an appropriate estimator for estimation of the rotor flux angle, flux magnitude.

  • PDF

Performance Analysis on Depth and Straight Motion Control based on Control Surface Combinations for Supercavitating Underwater Vehicle (초공동 수중운동체의 조종면 조합에 따른 심도 및 직진 제어성능 분석)

  • Yu, Beomyeol;Mo, Hyemin;Kim, Seungkeun;Hwang, Jong-Hyon;Park, Jeong-Hoon;Jeon, Yun-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.435-448
    • /
    • 2021
  • This study describes the depth and straight motion control performance depending on control surface combinations of a supercavitating underwater vehicle. When an underwater vehicle experiences supercavitation, friction resistance can be minimized, thus achieving the effect of super-high-speed driving. Six degrees of freedom modeling of the underwater vehicle are performed and the guidance and control loops are designed with not only a cavitator and an elevator, but also a rudder and a differential elevator to improve the stability of the roll and yaw axis. The control performance based on the combination of control surfaces is analyzed by the root-mean-square error for keeping depth and straight motion.

Augmented Reality based Dynamic State Transition Algorithm using the 3-Axis Accelerometer Sensor (3축 가속도 센서를 이용한 증강현실 기반의 동적 상태변환 알고리즘)

  • Jang, Yu-Na;Park, Sung-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.10
    • /
    • pp.86-93
    • /
    • 2010
  • With the introduction of smart phones, the augmented reality became popular and is increasingly drawing attention. The augmented reality in the mobile devices is becoming an individual area to study. Many applications of the augmented reality have been studied, but there are just a few studies on its combination with artificial intelligence in games. In this study, an artificial intelligence algorithm was proposed, which dynamically converts the state of the 3D agent in the augmented reality environment using the 3-Axis acceleration sensor in the smart phone. To control the state of the agent to which the artificial intelligence is applied, users used to directly enter the data or use markers to detect them. The critical values, which were determined via test, were given to the acceleration sensor to ensure accurate state conversion. In this paper, makerless tracking technology was used to implement the augmented reality, and the state of the agent was dynamically converted using the 3-Axis acceleration seonsor.

A study on Energy Conversion through Torque Control of IPMSM in EV Powertrain (EV 파워트레인에서 IPMSM의 토크 제어를 통한 에너지 변환에 관한 연구)

  • Baek, Soo-Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.5
    • /
    • pp.845-850
    • /
    • 2021
  • In this study, the energy conversion characteristics and design of electric vehicle (EV: Electric Vehicle) powertrain were performed. An interior permanent magnet synchronous motor (IPMSM) was targeted as a power source for the EV powertrain, and control was performed. In order to drive the IPMSM, two regions are considered: a constant torque and a constant output (field-weakening) region. The design of the control system for IPMSM was constructed based on the d-q reference frame (vector control). To determine the static characteristics of motor torque appearing in two areas of IPMSM, a torque control system and a d axis current control system of IPMSM were implemented and proposed. Matlab-Simulink software was used for characteristic analysis. Finally, by applying IPMSM to the powertrain model under the actual EV vehicle level conditions, simulation results of the proposed control system were performed and characteristics were analyzed.