• Title/Summary/Keyword: D-Optimal design

Search Result 1,317, Processing Time 0.025 seconds

Reverse engineering of concentric plug cover by 3D scanning and development of injection mold (3D 스캔을 이용한 콘센트 커버의 역설계 및 금형 개발)

  • Kim, Dong-Wook;Choi, Young-Rock;Shin, Sang-Eun;Kim, Sei-Hwan;Choi, Kyu-Kwang;Han, Seong-Ryeol
    • Design & Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.18-22
    • /
    • 2015
  • Mold making and product manufacturing process was made by a die through a number of stages. Thereby, it takes a long period of time from the manufacture of mold until passed the products to consumers. However, it is not possible to meet the diverse desires purchasing of consumer. We made a 3D CAD Model aligned with product scan data using reverse engineering. Utilizing thereafter flow analysis to derive the optimal mold conditions, by applying the condition, and devised a mold fabrication process that is much shorter than the conventional process for fabricating a mold. In this study, the outlet cover to the product, it describes a process, as a result, it was confirmed that the number of steps can be shortened much more than the conventional process.

  • PDF

Parametric design을 위한 자동설계모듈 생성

  • 황선원;반갑수;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.359-364
    • /
    • 1993
  • As advanced method for the automatic generation of parametric models in computer-aided design systems is required for most of two-dimensional model which is represented as a set of geometric elements, and constr- aining scheme formulas. The development system uses geometirc constrainis and topology parameters which are derived from feature recognition and grouping the design entities into optimal ones from pre-designed drawings. The aim of this paper is to present guidelines for the application and development of parametric design modules for the standard parts in mechaniscal system, the basic constitutional part of mold base, and other 2D features.

The Optimal Design and Leakage Flux Analysis of the Induction Heating Cooker (유도가열조리기의 최적설계 및 누설자속 해석)

  • Byun, Jin-Kyu;Park, Il-Han;Choi, Kyung;Jung, Hyun-Kyo;Hahn, Song-Yop;Roh, Hee-Succ;Kwon, Kyoung-An;Yang, Woo-Jong
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.157-159
    • /
    • 1996
  • For the optimal design of the induction heating cooker, precise and accurate analysis of the magnetic field inside the jar must be achieved first. Until now, design methods based on experience has been used in industry field. But this takes a lot of trial and error, high cost and also long development time. So the analysis of the magnetic field distribution is very important. In this paper the magnetic field inside the induction heating cooker is analyzed by using axisymmetrical FEM(finite element method). And the method of the coil location design for the optimal heat source distribution using sensitivity analysis is developed. In addition, the shielding effect of the non-axisymmetrical 3-D ferrite structure used in induction heating cooker is also analyzed by the integral method.

  • PDF

NPV-BASED 3D ARRAY DESIGN SYSTEM OF ROOF-TOP PHOTOVOLTAICS

  • Kim Se-Jong;Cho Dong-Hyun;Park Hyung-Jin;Yoon Hee-Ro;Koo Kyo-Jin
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.300-303
    • /
    • 2013
  • On BIPV systems, especially roof-top PV systems, the power generation is easier to be reduced due to the shades of facilities nearby, or roof itself. To secure profitability of roof-top PV systems, the optimal design of solar arrays through the precise shading analysis is an important item of design considerations. In this paper, an optimization system for array design of roof-top PVs is to be developed using three-dimensional Geospatial Information System(GIS). The profitability of income and expense is considered through the shading analysis of entire roofs. By applying the system to project for validation, the adequacy and the improvement of NPV of the system were verified compared to expert's design. The system has significance by reason that PV modules are placed through rules established with expert knowledge and geometric rules were applied to reflect the constructability and maintainability.

  • PDF

Design Optimization for Automotive Wheel Bearings Considering Life and Stiffness (수명과 강성을 고려한 자동차용 휠 베어링의 설계 최적화)

  • Seungpyo Lee
    • Tribology and Lubricants
    • /
    • v.39 no.3
    • /
    • pp.94-101
    • /
    • 2023
  • Automotive wheel bearings are a critical component of vehicles that support their weight and facilitate rotation. Life and stiffness are significant performance characteristics of wheel bearings. Designing wheel bearings involves finding optimal design variables that satisfy both performances. CO2 emission reduction and fuel efficiency regulations attribute to the recent increase in design requirements for lightweight and compact automotive parts while maintaining performance. However, achieving a design that maintains performance while reducing weight poses challenges, as performance and weight are generally inversely proportional. In this study, we perform design optimization of automotive wheel bearings considering life and stiffness. We develop a program that calculates the basic rated life and modified rated life based on international standards for evaluating the life of wheel bearings. We develop a regression equation using regression analysis to address the time-consuming stiffness analysis during repetitive analysis. We perform ANOVA and main effect analyses to understand the statistical characteristics of the developed regression equation. Furthermore, we verify its reliability by comparing the predicted and test results. We perform design optimization using the developed life prediction program, stiffness regression equation and weight regression equation. We select bearing specifications and geometry as design variables, weight as the cost function, and life and stiffness as constraints. Through design optimization, we investigate the influence of design variables on the cost function and constraints by comparing the initial and optimal design values.

Robust Design of a Dynamic System Using a Probabilistic Design Method (확률적 설계 방법을 이용한 동적 시스템의 강건 설계)

  • Ryu, Jang-Hee;Choi, In-Sang;Kim, Joo-Sung;Son, Young-Kap
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1171-1178
    • /
    • 2011
  • This paper shows the robust design results of an actuator, a kind of dynamic system. Variations in the components comprising the actuator cause uncertainties in the system's dynamic performance. Therefore, a probabilistic design method is applied to ensure robust actuator performance to component variation. A Simulink model for the actuator was built using transfer functions for the components. The dynamic responses of the actuator were evaluated using the Simulink model. Performance indexes were approximated as quadratic functions of the design parameters through the application of the response surface methodology (RSM) with the Simulink model. Then, a probabilistic design method was applied to the approximated performance indexes to obtain optimal design parameters that would provide robust actuator performance. The optimal design was compared to the present design in terms of the performance indexes and dynamic response characteristics over time.

Optimum Allocation of Sound Absorbing Materials in a Vibroacoustic System using Response Surface Methodology (반응표면법을 이용한 진동-음향 연성계의 흡음재 최적배치)

  • Hong, Do-Kwan;Baek, Hwang-Soon;Woo, Byung-Chul;Ahn, Chan-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.10
    • /
    • pp.1196-1203
    • /
    • 2011
  • Statistical optimum methodology of table of orthogonal array, ANOM, ANOVA and RSM are applied to formulate optimum allocation design with design variables. It can be minimized average SPL of control volume, the objective function in closed system by optimal allocated positions of absorbing material. Structural natural frequency and acoustic natural frequency of cavity are analyzed by FEM and BEM in the closed system. Using BEM, average SPL of specific control volume is calculated according to the condition before using absorbing material and after using it. It is shown that noise is reduced by $5.02dB_{RMS}$ by absorbing material located at optimal position and minimum $1.83dB_{RMS}$ and maximum $3.47dB_{RMS}$ by the table of orthogonal array.

Fluid Dynamics Analysis and Experimental Trial to Improve the Switching Performance of Eco-friendly Gas Insulated Switch (친환경 가스개폐기 개폐성능 향상을 위한 유동해석 및 실험)

  • Yu, Lyun;Ahn, Kil-Young;Kim, Young-Geun;Cho, Hae-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.42-49
    • /
    • 2022
  • An underground electric switch is a high-voltage switch used in distribution network systems for a reliable power supply. Many studies are being conducted to expand the switch to use an eco-friendly gas using dry air instead of SF6 gas to reduce greenhouse gas emissions. In this study, a flow analysis model was established to improve the performance of an eco-friendly gas switch. The results were compared and reviewed through experiments. For the optimal arc grid design applied to the switch, the flow characteristics based on the flow path configuration and the changes in arcing time for each configuration were compared. Flow analysis can predict the switch flow distribution, and a comparative review of the flow path configurations of various methods is possible.

Case Analysis Study on 3D printed parametric Fashion Products (3D프린팅 파라메트릭 패션제품 사례분석연구)

  • Ahn, Jin-wook;Jang, Joong-sik
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.12
    • /
    • pp.169-176
    • /
    • 2021
  • This study aims to explore the formativeness of 3D printed parametric fashion products while parametric design-based 3D printed fashion products are increasing. As a research method, theoretical review was conducted and formative properties of 3D printing parametric fashion products were derived, and cases of 3D printing parametric fashion products were collected and examined into three types of clothing, shoes, and accessories. As a result of the study, it was possible to confirm the shape with the motif of a natural object, and structurally, the economical optimal structure, assembly structure, and natural structure were confirmed. was found to use natural and achromatic colors. Through the understanding of the formativeness of 3D printing parametric fashion products presented in this study, it is expected that it will be used as basic data to understand the spread and formative flow of parametric-based fashion products.

Selection of The Optimal Line using 3D GIS (3차원 지형정보를 이용한 최적노선 선정)

  • Han, Byoung-Cheol;Choi, Hyun;Kang, Sang-Yun;Kang, In-Joon
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.367-374
    • /
    • 2004
  • Roads which were not considered conditions such as capacity of the traffic have made seriously traffic problems and complex road lines. Construction of new roads have to make efficiently for solving the above problems and gain benefits. Simulation using 3D-GIS help find a matter of the design and do understanding users who work In the practical businesses. This study is showed selection of the optimal road line based on 3D-GIS through the traffic modeling.

  • PDF