• 제목/요약/키워드: D&I can

Search Result 2,543, Processing Time 0.033 seconds

Formative Properties of 3D Animation based on the Theory of Gestalt -Centering of Korean film - (게슈탈트 시지각 이론에 의한 3D 애니메이션의 조형성 -한국 영화 <웰컴투 동막골>을 중심으로-)

  • Kim, Kyung-Eun;Yun, Young-Du
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.05a
    • /
    • pp.279-284
    • /
    • 2006
  • The field of film art to be wised expression as development of Media has grown. Recently, the concern and effort has built up in digital film by Computer Graphics(CG) one of SFX. In this paper, I certified the formative properties based on Gestalt theory and centering best show in 2005. As a result, I confirmed that to insert 3D animation in film can lead fantasy or virtual world unable to be felt in real world, with the intention of producer, and that it was applied to free space not to be restricted making a film of scenes. And I confirmed that the partial modeling animation as the Gestalt theory that gives totality to objects of perception and needs closure can play role of understanding the meaning of film.

  • PDF

The development of EASI-based multi-path analysis code for nuclear security system with variability extension

  • Andiwijayakusuma, Dinan;Setiadipura, Topan;Purqon, Acep;Su'ud, Zaki
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3604-3613
    • /
    • 2022
  • The Physical Protection System (PPS) plays an important role and must effectively deal with various adversary attacks in nuclear security. In specific single adversary path scenarios, we can calculate the PPS effectiveness by EASI (Estimated Adversary Sequence Interruption) through Probability of Interruption (PI) calculation. EASI uses a single value of the probability of detection (PD) and the probability of alarm communications (PC) in the PPS. In this study, we develop a multi-path analysis code based on EASI to evaluate the effectiveness of PPS. Our quantification method for PI considers the variability and uncertainty of PD and PC value by Monte Carlo simulation. We converted the 2-D scheme of the nuclear facility into an Adversary Sequence Diagram (ASD). We used ASD to find the adversary path with the lowest probability of interruption as the most vulnerable paths (MVP). We examined a hypothetical facility (Hypothetical National Nuclear Research Facility - HNNRF) to confirm our code compared with EASI. The results show that implementing the variability extension can estimate the PI value and its associated uncertainty. The multi-path analysis code allows the analyst to make it easier to assess PPS with more extensive facilities with more complex adversary paths. However, the variability of the PD value in each protection element allows a significant decrease in the PI value. The possibility of this decrease needs to be an important concern for PPS designers to determine the PD value correctly or set a higher standard for PPS performance that remains reliable.

Interference-Aware Channel Assignment Algorithm in D2D overlaying Cellular Networks

  • Zhao, Liqun;Wang, Hongpeng;Zhong, Xiaoxiong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1884-1903
    • /
    • 2019
  • Device-to-Device (D2D) communications can provide proximity based services in the future 5G cellular networks. It allows short range communication in a limited area with the advantages of power saving, high data rate and traffic offloading. However, D2D communications may reuse the licensed channels with cellular communications and potentially result in critical interferences to nearby devices. To control the interference and improve network throughput in overlaid D2D cellular networks, a novel channel assignment approach is proposed in this paper. First, we characterize the performance of devices by using Poisson point process model. Then, we convert the throughput maximization problem into an optimal spectrum allocation problem with signal to interference plus noise ratio constraints and solve it, i.e., assigning appropriate fractions of channels to cellular communications and D2D communications. In order to mitigate the interferences between D2D devices, a cluster-based multi-channel assignment algorithm is proposed. The algorithm first cluster D2D communications into clusters to reduce the problem scale. After that, a multi-channel assignment algorithm is proposed to mitigate critical interferences among nearby devices for each D2D cluster individually. The simulation analysis conforms that the proposed algorithm can greatly increase system throughput.

TENSOR PRODUCTS OF C*-ALGEBRAS WITH FIBRES GENERALIZED NONCOMMUTATIVE TORI AND CUNTZ ALGEBRAS

  • Boo, Deok-Hoon;Park, Chun-Gil
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.13 no.1
    • /
    • pp.139-144
    • /
    • 2000
  • The generalized noncommutative torus $T_{\rho}^d$ of rank m was defined in [2]. Assume that for the completely irrational noncommutative subtorus $A_{\rho}$ of rank m of $T_{\rho}^d$ there is no integer q > 1 such that $tr(K_0(A_{\rho}))=\frac{1}{q}{\cdot}tr(K_0(A_{\rho^{\prime}}))$ for $A_{\rho^{\prime}}$ a completely irrational noncommutative torus of rank m. All $C^*$-algebras ${\Gamma}({\eta})$ of sections of locally trivial $C^*$-algebra bundles ${\eta}$ over $M=\prod_{i=1}^{e}S^{2k_i}{\times}\prod_{i=1}^{s}S^{2n_i+1}$, $\prod_{i=1}^{s}\mathbb{PR}_{2n_i}$, or $\prod_{i=1}^{s}L_{k_i}(n_i)$ with fibres $T_{\rho}^d{\otimes}M_c(\mathbb{C})$ were constructed in [6, 7, 8]. We prove that ${\Gamma}({\eta}){\otimes}M_{p^{\infty}}$ is isomorphic to $C(M){\otimes}A_{\rho}{\otimes}M_{cd}(\mathbb{C}){\otimes}M_{p^{\infty}}$ if and only if the set of prime factors of cd is a subset of the set of prime factors of p, that $\mathcal{O}_{2u}{\otimes}{\Gamma}({\eta})$ is isomorphic to $\mathcal{O}_{2u}{\otimes}C(M){\otimes}A_{\rho}{\otimes}M_{cd}(\mathbb{C})$ if and only if cd and 2u - 1 are relatively prime, and that $\mathcal{O}_{\infty}{\otimes}{\Gamma}({\eta})$ is not isomorphic to $\mathcal{O}_{\infty}{\otimes}C(M){\otimes}A_{\rho}{\otimes}M_{cd}(\mathbb{C})$ if cd > 1 when no non-trivial matrix algebra can be ${\Gamma}({\eta})$.

  • PDF

Holographic Recording Versus Holographic Lithography

  • Seungwoo Lee
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.638-654
    • /
    • 2023
  • Holography is generally known as a technology that records and reconstructs 3D images by simultaneously capturing the intensity and phase information of light. Two or more interfering beams and illumination of this interference pattern onto a photosensitive recording medium allow us to control both the intensity and phase of light. Holography has found widespread applications not only in 3D imaging but also in manufacturing. In fact, it has been commonly used in semiconductor manufacturing, where interference light patterns are applied to photolithography, effectively reducing the half-pitch and period of line patterns, and enhancing the resolution of lithography. Moreover, holography can be used for the manufacturing of 3D regular structures (3D photonic crystals), not just surface patterns such as 1D or 2D gratings, and this can be broadly divided into (i) holographic recording and (ii) holographic lithography. In this review, we conceptually contrast two seemingly similar but fundamentally different manufacturing methods: holographic recording and holographic lithography. We comprehensively describe the differences in the manufacturing processes and the resulting structural features, as well as elucidate the distinctions in the diffractive optical properties that can be derived from them. Lastly, we aim to summarize the unique perspectives through which each method can appear distinct, with the intention of sharing information about this field with both experts and non-experts alike.

Development of an Extension Model based on Three Dimensional Wireframe Model for KOSDIC Format in the Construction Field (건설 분야 도면정보 교환 표준을 위한 3차원 와이어프레임 기반의 확장 모델 개발에 관한 연구)

  • Kim I.H.;Seo J.C.;Won J.S.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.3
    • /
    • pp.179-187
    • /
    • 2005
  • The usage of mixed 2D and 3D CAD data of commercial CAD systems is required in the construction practice. Sometimes 3D wireframe model is required by end-users when 2D CAD data is delivered. However, current KOSDIC can not represent 3D CAD data, because it has been developed as a 2D drawing delivery standard. Therefore, this study is to provide exchange and sharing of mixed 2D and 3D CAD data that add 3D wireframe model in the KOSDIC. To achieve this purpose, the authors have investigated the 3D CAD entities of commercial CAD systems, and have analyzed STEP standards providing 3D wireframe model. The result, the authors have extracted 3D CAD common entities based wireframe model which shall be added in the KOSDIC. This study can be beneficial by using the developed data model for heterogeneous CAD systems, and by providing the representation of mixed 2D and 3D CAD data in construction practice such as GIS, piping system, and so forth.

CPU Technology and Future Semiconductor Industry (I) (CPU 기술과 미래 반도체 산업 (I))

  • Park, Sahnggi
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.2
    • /
    • pp.89-103
    • /
    • 2020
  • Knowledge of the technology, characteristics, and market trends of the latest CPUs used in smartphones, computers, and supercomputers and the research trends of leading US university experts gives an edge to policy-makers, business executives, large investors, etc. To this end, we describe three topics in detail at a level that can help educate the non-majors to the extent possible. Topic 1 comprises the design and manufacture of a CPU and the technology and trends of the smartphone SoC. Topic 2 comprises the technology and trends of the x86 CPU and supercomputer, and Topic 3 involves an optical network chip that has the potential to emerge as a major semiconductor chip. We also describe three techniques and experiments that can be used to implement the optical network chip.

The Forecd Vibration Analysis using Transfer Matrix(I) : Immersed Infinite Circular Cylindrical Shell (전달 행렬을 이용한 진동 및 방사소음 해석 (I) : 무한 원통형 몰수체)

  • 정우진;신구균;전재진;이헌곤
    • Journal of KSNVE
    • /
    • v.4 no.4
    • /
    • pp.443-449
    • /
    • 1994
  • In the analysis of circular cylindrical shell's vibration and sound radiation, there are numerical and analytical methods. Numerical methods such as F.E.M and B.E.M, have the limit of frequency range. Analytical method can be applied to the circular cylindrical shell from low frequency to high frequency. In this paper, we use the analytical method for shell, and numerical method, F.D.M, for fluid. We also use the method using transfer matrix and eigenanalysis of transfer matrix which can therefore calculate the rotational d.o.f that is very imkportant in synthesis with inner structure. Inner structure has much effect on the submerged circular cylindrical shell vibration and sound rediation. Results for the immersed circular cylindrical shell vibration and sound radiation are compared with the analytic solutions.

  • PDF

A technique for capturing structural crack geometry in numerical simulation based on the invariant level set method

  • Tao Wang;Shangtao Hu;Menggang Yang;Shujun Fang
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.243-254
    • /
    • 2023
  • Engineering structures usually suffer from cracks. The crack geometry has an influence on the structural mechanical properties and subsequent crack propagations. However, as an extensively utilized method in fracture analysis, the extended finite element method provided by Abaqus fails to output the specific location and dimensions of fractures. In this study, a technique to capture the crack geometry is proposed. The technique is based on the invariant level set method (I-LSM), which can avoid updating the level set function during crack development. The solution is achieved by an open-source plug-in programmed by Python. Three examples were performed to verify the effectiveness and robustness of the program. The result shows that the developed program can accurately output the crack geometry in both the 2D and 3D models. The open-source plug-in codes are included as supplementary material.

Comparison between Overview Menu and Text Menu in Smartphone

  • Kim, Kyungdoh
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.529-534
    • /
    • 2013
  • Objective: This study determines which of two types of 2D menu is better on iPhone. Background: Menu systems have been important components in modern graphical user interfaces. Review of menu design studies for human-computer interaction suggests that menu design guidelines for smartphones need to be reappraised. Method: A nested factorial design was used. Twenty-four participants were divided into two groups. The subjects were nested within the menu type. Two types of menus are an overview menu and a text menu. Two different breadth levels are 16 and 64. The participants performed five tasks in each breadth level. A task is defined as locating a product or product class on the deepest level of the hierarchy. An Apple iPhone 2G was used. Results: The results for ANOVA indicated a lack of a significant difference for time to respond between the two types of 2D menus. The overview menu showed the better satisfaction score between the two menu types. Conclusion: Even though the differences were not significant, an overview menu tended to show better performance and preference scores than a text menu that required scrolling. Application: This study can provide menu design guidelines when 2D menus are considered for small displays in a high breadth level.