• 제목/요약/키워드: Cytokine regulatory effect

검색결과 85건 처리시간 0.021초

Regulatory Effect of Th-2 Cytokine Production in Mast Cells by 02PS15

  • Na, Ho-Jeong;Seo, Young-Wan;Lee, Eun-Hee;Kim, Hyung-Min;Hong, Seung-Heon
    • Biomolecules & Therapeutics
    • /
    • 제12권2호
    • /
    • pp.79-84
    • /
    • 2004
  • 02PS15 extracts (BuOH, $H_2O$, and crude extracts) significantly inhibited IL-4 and IL-6 secretion from the phytohemagglutinin (PHA)-plus phorbol 12-myristate 13-acetate (PMA)-induced peripheral blood mononuclear cleas (P<0.05). 02PS15 extracts (BuOH and crude extracts) also significantly inhibited the histamine release from rat peritoneal mast cells (P<0.05). Significant reduced levels (P<0.05) of PMA- and A23187-induced IL-8 were observed in the human mast cell line, HMC-1, with O2PS15 extracts (BuOH and crude extracts). 02PS15 extracts (BuOH and crude extract) downregulated the expression of IL-6 and IL-8 in the activated HMC-1. These results suggest that O2PS15 has the inhibitory effect of atopic allergic reaction anil this might be useful for clinical application to treat several allergic diseases such as atopic dermatitis.

의이인(薏苡仁)의 염증성 사이토카인 발현 및 조절에 관한 연구 (Inhibitory Effect of Coicis Semen Extract(CSE) on Pro-inflammatory Mediatory)

  • 윤혜진;이유진;강미선;백정한
    • 대한한방소아과학회지
    • /
    • 제23권1호
    • /
    • pp.159-171
    • /
    • 2009
  • Objectives This study was evaluated the effects of CSE the regulatory mechanism of NO and cytokines in the LPS-stimulated Raw 264.7 cells. Methods The Coicis Semen MeOH extract dissolved in EMEM for 1 hour prior to the addition of LPS(1${mu}g/ml$). The cell viability was measured by MTT assay, and Nitric Oxide production was monitored by measuring the nitrite content in culture medium. The levels of cytokine and PGE2 were analyzed by sandwich immunoassays. Results CSE inhibited the production of NO (0.03 and 0.1 mg/ml), $TNF-{\alpha}$ (0.03 and 0.1 mg/ml), $IL-1{\beta}$ (0.03 and 0.1 mg/ml), IL-6 (0.03, 0.1 mg/ml) and PGE2(0.03 and 0.1 mg/ml) in Raw 264.7 cells activated with LPS(lipopolysaccharide). Conclusion According to the results above, Coicis Semen can produce anti-inflammatory effect, which may play a role in adjunctive therapy in Gram-negative bacterial infections.

  • PDF

Regulatory Effect of Fresh Rehmanniae Radix Extract on the in Vitro Production of Proinflammatory Cytokines in Pristane-Induced Lupus Mice

  • Chae, Byeong-Suk;Yang, Jae-Heon
    • Natural Product Sciences
    • /
    • 제13권4호
    • /
    • pp.322-327
    • /
    • 2007
  • Fresh Rehmanniae radix is known as a traditional medicine with anti-inflammatory and antioxidant activities. However, whether Rehmanniae radix attenuates autoimmune inflammation in lupus models characterized by T cell-dependent autoimmune disease including overproduction of proinflammatory cytokines, loss of T cell tolerance, and B cell hyperactivity remains unclear. We investigated the effect of fresh Rehmanniae radix methanol extracts (RGMeOH) on the in vitro overproduction of proinflammatory cytokines by immune cells from pristaneinduced lupus BALB/c mice. These results showed that RGMeOH remarkably attenuated Con A-increased overproduction of proinflammatory cytokines, such as IL-2, IFN-${\gamma}$, IL-6 and IL-10 by splenocytes from pristaneinduced lupus mice. RGMeOH greatly reduced LPS-induced production of TNF-${\alpha}$ by splenic macrophages from pristane-induced lupus mice, while significantly enhanced LPS-induced production of IL-10 but did not alter IL-6 by splenic macrophages and splenocytes. These findings suggest that RGMeOH may ameliorate lupus systemic inflammatory autoimmunity via down-regulation of TNF-${\alpha}$ and T cell-dependent cytokine production.

The Anti-inflammatory Mechanism of Protaetia brevitarsis Lewis via Suppression the Activation of NF-κB and Caspase-1 in LPS-stimulated RAW264.7 Cells

  • Myung, Noh-Yil;Ahn, Eun-Mi;Kim, Su-Jin
    • 대한의생명과학회지
    • /
    • 제26권4호
    • /
    • pp.267-274
    • /
    • 2020
  • The larva of Protaetia brevitarsis Lewis (P. brevitarsis), edible insect, is traditionally consumed as alternative source of nutrients and has various health benefits. However, the exact pharmaceutical effects of P. brevitarsis on inflammatory response are still not well understood. Thus, we investigated the anti-inflammatory effects and mechanisms of P. brevitarsis in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. We investigated the effects of P. brevitarsis on the expression levels of inflammatory-related genes, including inflammatory cytokines, prostaglandin E2 (PGE2), cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) in LPS-stimulated RAW264.7 cells. To understand the anti-inflammatory mechanism of P. brevitarsis, we explored the regulatory effect of P. brevitarsis on nuclear factor (NF)-κB and caspase-1 activation. The findings of this study demonstrated that P. brevitarsis inhibits the LPS-induced inflammatory cytokine and PGE2 levels, as well as COX-2 and iNOS expression. Moreover, we confirmed that the anti-inflammatory effect of P. brevitarsis occurs via suppression of the activation of NF-κB and caspase-1. Conclusively, these findings provide experimental evidence that P. brevitarsis may be useful candidate for the treatment of inflammatory-related diseases.

Production of Recombinant Human Interleukin-11 (IL-11) in Transgenic Tobacco (Nicotiana tabacum) Plants

  • Sadeghi, Abdorrahim;Mahdieh, Majid;Salimi, Somayeh
    • Journal of Plant Biotechnology
    • /
    • 제43권4호
    • /
    • pp.432-437
    • /
    • 2016
  • Interleukin-11 (IL-11) is a cytokine that plays a key regulatory role in the immune system. Recombinant human IL-11 (rhIL-11) exerts a preventative effect against apoptotic cell death and inhibits preadipocyte differentiation. IL-11 also is used to stimulate the bone marrow to produce platelets in order to prevent low platelets that may be caused by chemotherapy. Unfortunately, the high production cost of IL-11 associated. In this study, we investigated the feasibility of transgenic plants for the cost-effective production of rhIL-11. Production of rhIL-11 proteins in whole-plant expression system will be more economical when compared to the current E. coli based expression system. The human rhIL-11 gene was codon optimized to maximize plant host system expression. IL-11 expression vector under the control of a constitutive cauliflower mosaic virus 35S (CaMV 35S) promoter was introduced into tobacco by Agrobacterium-mediated transformation. The 5'-leader sequence (called ${\Omega}$) of tobacco mosaic virus (TMV) as a translational enhancer was added to construct. Transgenic tobacco plants expressing various levels of rhIL-11 protein were generated. Western blotting of the stably transformed lines demonstrated accumulation of the appropriately sized rhIL-11 protein in leaves. This research demonstrated the efficacy of using tobacco as an expression system for the production of rhIL-11.

Effect of Leptin on the Expression of Lipopolysaccharide-Induced Chemokine KC mRNA in the Mouse Peritoneal Macrophages

  • Lee, Dong-Eun;Kim, Hyo-Young;Song, In-Hwan;Kim, Sung-Kwang;Seul, Jung-Hyun;Kim, Hee-Sun
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권4호
    • /
    • pp.722-729
    • /
    • 2004
  • Leptin is an adipocyte-secreted hormone and its plasma levels correlate with total body fat mass, however, it also plays a regulatory role in immunity, inflammation, and hematopoiesis. Chemokine is known as a chemoattractant cytokine in inflammatory reaction, but its role in leptin reaction has not been well studied. In this study, the direct effect of leptin on the expression of chemokine mRNAs and lipopolysaccharide (LPS)-induced chemokine KC mRNA in mouse peritoneal macrophages was investigated. Leptin did not induce the expression of lymphotactin, RANTES, eotaxin, MIP-1$\beta$, MIP-1$\alpha$, MIP-2, MCP-1, IP-10, TCA-3, and KC mRNA in mouse peritoneal macrophages, and had no direct effect on the expression of these LPS-induced chemokine mRNAs except KC mRNA. The synergistic effect of leptin on the expression of LPS-induced KC mRNA occurred late in the time course of response to LPS. The increased expressions of Ob-Rb mRNA and leptin receptor protein were detected during the LPS treatment. Leptin produced a substantial increase in the stability of the LPS-induced KC mRNA, and the synergistic effect of leptin on LPS-induced KC mRNA expression was further augmented by cycloheximide (CHX). Pyrrolidine dithiocarbamate (PDTC) did not block the synergistic effect of leptin on LPS-induced KC mRNA expression in mouse peritoneal macrophages. These data suggest that although leptin has no direct effect on the expression of lymphotactin, RANTES, eotaxin, MIP-1$\beta$, MIP-1$\alpha$, MIP-2, MCP-1, IP-10, TCA-3, and KC mRNA in mouse peritoneal macrophages, the synergistic effect of leptin on the expression of LPS-induced KC mRNA has the possibility that LPS might induce the expression of the Ob-Rb receptor or an unknown gene(s) that sensitizes macrophages to the synergistic function of leptin. Therefore, further studies are necessary to examine leptin as a regulatory factor of chemokine production.

Regulation of Tumor Immune Surveillance and Tumor Immune Subversion by TGF-$\beta$

  • Park, Hae-Young;Wakefield, Lalage M;Mamura, Mizuko
    • IMMUNE NETWORK
    • /
    • 제9권4호
    • /
    • pp.122-126
    • /
    • 2009
  • Transforming growth factor-$\beta$ (TGF-$\beta$) is a highly pleiotropic cytokine playing pivotal roles in immune regulation. TGF-$\beta$ facilitates tumor cell survival and metastasis by targeting multiple cellular components. Focusing on its immunosuppressive functions, TGF-$\beta$ antagonists have been employed for cancer treatment to enhance tumor immunity. TGF-$\beta$ antagonists exert anti-tumor effects through #1 activating effector cells such as NK cells and cytotoxic $CD8^+$ Tcells (CTLs), #2 inhibiting regulatory/suppressor cell populations, #3 making tumor cells visible to immune cells, #4 inhibiting the production of tumor growth factors. This review focuses on the effect of TGF-$\beta$ on T cells, which are differentiated into effector T cells or newly identified tumor-supporting T cells.

Immune inflammatory modulation as a potential therapeutic strategy of stem cell therapy for ALS and neurodegenerative diseases

  • Kim, Seung Hyun;Oh, Ki-Wook;Jin, Hee Kyung;Bae, Jae-Sung
    • BMB Reports
    • /
    • 제51권11호
    • /
    • pp.545-546
    • /
    • 2018
  • With emerging evidence on the importance of non-cell autonomous toxicity in neurodegenerative diseases, therapeutic strategies targeting modulation of key immune cells. including microglia and Treg cells, have been designed for treatment of ALS and other neurodegenerative diseases. Strategy switching the patient's environment from a pro-inflammatory toxic to an anti-inflammatory, and neuroprotective condition, could be potential therapy for neurodegenerative diseases. Mesenchymal stem cells (MSCs) regulate innate and adaptive immune cells, through release of soluble factors such as $TGF-{\beta}$ and elevation of regulatory T cells (Tregs) and T helper-2 cells (Th2 cells), would play important roles, in the neuroprotective effect on motor neuronal cell death mechanisms in ALS. Single cycle of repeated intrathecal injections of BM-MSCs demonstrated a clinical benefit lasting at least 6 months, with safety, in ALS patients. Cytokine profiles of CSF provided evidence that BM-MSCs, have a role in switching from pro-inflammatory to anti-inflammatory conditions. Inverse correlation of $TGF-{\beta}1$ and MCP-1 levels, could be a potential biomarker to responsiveness. Thus, additional cycles of BM-MSC treatment are required, to confirm long-term efficacy and safety.

Immune Regulatory Effect of Newly Isolated Lactobacillus delbrueckii from Indian Traditional Yogurt

  • Hong, Yi-Fan;Lee, Yoon-Doo;Park, Jae-Yeon;Jeon, Boram;Jagdish, Deepa;Jang, Soojin;Chung, Dae Kyun;Kim, Hangeun
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권8호
    • /
    • pp.1321-1323
    • /
    • 2015
  • Lactic acid bacteria (LAB) are microorganisms that are believed to provide health benefits. Here, we isolated LAB from Indian fermented foods, such as traditional Yogurt and Dosa. LAB from Yogurt most significantly induced TNF-α and IL-1β production, whereas LAB from Dosa induced mild cytokine production. After 16S rRNA gene sequencing and phylogenetic analysis, a Yogurt-borne lactic acid bacterium was identified and classified as Lactobacillus delbrueckii subsp. bulgaricus, and it was renamed L. delbrueckii K552 for the further studies. Our data suggest that the newly isolated L. delbrueckii can be used for the treatment of immune deficiency disorders.

Regulatory Effects of Gamisamul-tang on Atopic Dermatitis Induced in the NC/Nga Mice

  • Yang, Sun-Sim;NamGung, Uk;Kim, Dong-Hee
    • 동의생리병리학회지
    • /
    • 제20권4호
    • /
    • pp.1036-1043
    • /
    • 2006
  • The present study was conducted to investigate the effect of Gamisamul-tang (GSMT) on atopic dermatitis (AD). AD was induced in NC/Nga mutant mice by DNCB treatment. GSMT administration reduced levels of skin severity scores. Serum levels of IgE, IgG, IgM, and inflammatory cytokines including IL-4, IL-4 and 1L-13 were significantly decreased by GSMT treatment. Levels of mRNA's encoding IL-4, IL-6, IL-13, $TNF-{\alpha}$, and $interferon-{\gamma}$ in the dermal tissue and draining lymph node (DLN) by real time RT-PCR analysis showed decrease by GSMT testament. Moreover, the number of CD4+ and CD8+ cells was significantly decreased in the spleen and DLN tissues. Histological examination showed that infiltration levels of immune cells in ear, skin, and DLN of AD-induced NC/Nga mice were much improved by GSMT treatment. The present data suggest that GSMT may play an important role in recovering AD symptoms by regulating immune reactivity.