• Title/Summary/Keyword: Cytochrome c release

Search Result 237, Processing Time 0.024 seconds

Sanguinarine Induces Apoptosis in Human Hepatocellular Carcinoma HepG2 Cells through the Generation of ROS and Modulation of Akt/ERK Signaling Pathways (HepG2 인체 간암세포의 ROS 생성 및 ERK/Akt 신호전달 경로 조절을 통한 sanguinarine의 apoptosis 유도)

  • Hwang, Ju Yeong;Cho, Yung Hyun
    • Journal of Life Science
    • /
    • v.25 no.9
    • /
    • pp.984-992
    • /
    • 2015
  • Sanguinarine is a benzophenanthridine alkaloid originally isolated from the roots of Sanguinaria canadensis. It has multiple biological activities (e.g., antioxidant and antiproliferative) and immune-enhancing potential. In this study, we explored the proapoptotic properties and modes of action of sanguinarine in human hepatocellular carcinoma HepG2 cells. Our results revealed that sanguinarine inhibited HepG2 cell growth and induced apoptosis in a dose-dependent manner. The induction of apoptosis by sanguinarine was associated with the up-regulation of Fas and Bax, the release of cytochrome c from the mitochondria to the cytosol, and the loss of the mitochondrial membrane potential. In addition, sanguinarine activated caspase-9 and -8, initiator caspases of the intrinsic and death extrinsic pathways, respectively, and caspase-3, accompanied by proteolytic degradation of poly (ADP-ribose) polymerase. Sanguinarine also triggered the generation of reactive oxygen species (ROS). The elimination of ROS by N-acetylcysteine reversed sanguinarine-induced apoptosis. Furthermore, sanguinarine induced the dephosphorylation of Akt and the phosphorylation of mitogen-activated protein kinases, including extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), and p38. The growth inhibition was enhanced by the combined treatment of sanguinarine with a phosphatidylinositol 3'-kinase (PI3K) inhibitor and an ERK inhibitor but not JNK and p38 inhibitors. Overall, our data indicate that the proapoptotic effects of sanguinarine in HepG2 cells depend on ROS production and the activation of both intrinsic and extrinsic signaling pathways, which is mediated by blocking PI3K/Akt and activating the ERK pathway. Thus, our data suggest that sanguinarine may be a natural compound with potential for use as an antitumor agent in liver cancer.

Benzyldihydroxyoctenone, a Novel Nonsteroidal Antiandrogen, Shows Differential Apoptotic Induction in Prostate Cancer Cells in Response to Their Androgen Responsiveness

  • Suh, Hye-Won;Oh, Ha-Lim;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.5
    • /
    • pp.540-544
    • /
    • 2011
  • The molecular mechanisms of apoptotic induction by benzyldihydroxyoctenone (BDH), a nonsteroidal antiandrogen, isolated from the culture broth of Streptomyces sp., have been previously published in prostate cancer LNCaP cells. Apoptotic induction of BDH-treated LNCaP cells was associated with downregulation of Bcl-xL that caused, in turn, cytochrome c release from mitochondria, and activation of procaspases and specific proteolytic cleavage of poly(ADP-ribose) polymerase (PARP). The purpose of the present study was to investigate the patterns of apoptotic induction by BDH in non-prostate, ovarian cancer PA-1 (androgen-independent and -insensitive) cells and prostate cancer cells with different androgen responsiveness, such as C4-2 (androgen-independent and -sensitive), 22Rv1 (androgen-dependent and -low sensitive), and LNCaP (androgen-dependent and -high sensitive) cells. We found that BDH-treated LNCaP cell proliferation was significantly inhibited in a time-dependent manner and induced apoptosis via downregulation of the androgen receptor (AR) and prostate-specific antigen (PSA), as well as antiapoptotic Bcl-xL protein. However, the levels of BDH-mediated apoptotic induction and growth inhibition in 22Rv1 cells were apparently lower than those of LNCaP cells. In contrast, the induction of apoptosis and antiproliferative effect in BDH-treated non-prostate cancer PA-1 and hormone refractory C4-2 cells were not detectable and marginal, respectively. Therefore, BDH-mediated differential apoptotic induction and growth inhibition in a cell type seem to be obviously dependent on its androgen responsiveness; primarily on androgen-dependency, and then on androgensensitivity.

L-ascorbic acid induces apoptosis in human laryngeal epidermoid Hep-2 cells by modulating the nuclear factor kappa-light-chain-enhancer of activated B cells/mitogen-activated protein kinase/Akt signaling pathway

  • Park, Jung-Sun;Kim, Yoon-Jung;Park, Sam Young;Chung, Kyung-Yi;Oh, Sang-Jin;Kim, Won-Jae;Jung, Ji-Yeon
    • International Journal of Oral Biology
    • /
    • v.45 no.4
    • /
    • pp.169-178
    • /
    • 2020
  • L-ascorbic acid (L-AA; vitamin C) induces apoptosis in cancer cells. This study aimed to elucidate the molecular mechanisms of L-AA-induced apoptosis in human laryngeal epidermoid carcinoma Hep-2 cells. L-AA suppressed the viability of Hep-2 cells and induced apoptosis, as shown by the cleavage and condensation of nuclear chromatin and increased number of Annexin V-positive cells. L-AA decreased Bcl-2 protein expression but upregulated Bax protein levels. In addition, cytochrome c release from the mitochondria into the cytosol and activation of caspase-9, -8, and -3 were enhanced by L-AA treatment. Furthermore, apoptosis-inducing factor (AIF) and endonuclease G (EndoG) were translocated into the nucleus during apoptosis of L-AA-treated Hep-2 cells. L-AA effectively inhibited the constitutive nuclear factor-κB (NF-κB) activation and attenuated the nuclear expression of the p65 subunit of NF-κB. Interestingly, L-AA treatment of Hep-2 cells markedly activated Akt and mitogen-activated protein kinase (MAPK; extracellular signal-regulated kinase 1/2, p38, and c-Jun N-terminal kinase [JNK]) and and LY294002 (Akt inhibitor), SB203580 (p38 inhibitor) or SP600125 (a JNK inhibitor) decreased the levels of Annexin V-positive cells. These results suggested that L-AA induces the apoptosis of Hep-2 cells via the nuclear translocation of AIF and EndoG by modulating the Bcl-2 family and MAPK/Akt signaling pathways.

Inhibition of Nitric Oxide-induced Neuronal Apoptosis in PC12 Cells by Epigallocatechin Gallate

  • Jung, Ji-Yeon;Jeong, Yeon-Jin;Han, Chang-Ryoung;Kim, Sun Hun;Kim, Hyun-Jin;Lee, Ki-Heon;Park, Ha-Ok;Kim, Won-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.4
    • /
    • pp.239-246
    • /
    • 2005
  • In the central nervous system, nitric oxide (NO) is associated with many pathological diseases such as brain ischemia, neurodegeneration and inflammation. The epigallocatechin gallate (EGCG), a major compound of green tea, is recognized as protective substance against neuronal diseases. This study is aimed to investigate the effect of EGCG on NO-induced cell death in PC12 cells. Administration of sodium nitroprusside (SNP), a NO donor, decreased cell viability in a dose- and time-dependent manner and induced genomic DNA fragmentation with cell shrinkage and chromatin condensation. EGCG diminished the decrement of cell viability and the formation of apoptotic morphologenic changes as well as DNA fragmentation by SNP. EGCG played as an antioxidant that attenuated the production of reactive oxygen species (ROS) by SNP. The cells treated with SNP showed downregulation of Bcl-2, but upregulation of Bax. EGCG ameliorated the altered expression of Bcl-2 and Bax by SNP. The release of cytochrome c from mitochondria into cytosol and expression of voltage -dependent anion channel (VDAC)1, a cytochrome c releasing channel in mitochondria, were increased in SNP-treated cells, whereas were attenuated by EGCG. The enhancement of caspase-9, preceding mitochondria-dependent pathway, caspase-8 and death receptor-dependent pathway, as well as caspase-3 activities were suppressed by EGCG. SNP upragulated Fas and Fas-L, which are death receptor assembly, whereas EGCG ameliorated the expression of Fas enhanced by SNP. These results demonstrated that EGCG has a protective effect against SNP-induced apoptosis in PC12 cells, through scavenging ROS and regulating the mitocondria- and death receptor-mediated signal pathway. The present study suggest that EGCG might be a natural neuroprotective substance.

Induction of Apoptosis by Hwangheuk-san in AGS Human Gastric Carcinoma Cells through the Generation of Reactive Oxygen Species and Activation of Caspases (AGS 인체 위암세포에서 황흑산에 의한 ROS 생성 및 caspase 활성 의존적 apoptosis 유발)

  • Hong, Su Hyun;Park, Cheol;Kim, Kyoung Min;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.25 no.11
    • /
    • pp.1235-1243
    • /
    • 2015
  • Hwangheuk-san (HHS) is a Korean multi-herb formula comprising four medicinal herbs. HHS, which was recorded in “Dongeuibogam,” has been used to treat patients with inflammation syndromes and digestive tract cancer for hundreds of years. However, little is known about its anti-tumor efficacy. The present study investigated the pro-apoptotic effect and mode of action of HHS against AGS human gastric carcinoma cells. HHS inhibited the cell growth of AGS cells in a dose-dependent manner, which was associated with the induction of apoptotic cell death, as evidenced by the formation of apoptotic bodies, chromatin condensation, and an accumulation of cells in the sub-G1 phase. HHS-induced apoptotic cell death was associated with the up-regulation of pro-apoptotic Bax protein expression, down-regulation of antiapoptotic Bcl-2 protein, and the release of cytochrome c from mitochondria to the cytosol. The treatment of AGS cells with HHS significantly elevated the generation of reactive oxygen species (ROS). Additionally, apoptosis-inducing concentrations of HHS induced the activation of both caspase-9 and -8, initiator caspases of the mitochondrial-mediated intrinsic and death receptor-mediated extrinsic pathways, respectively, and caspase-3, accompanied by proteolytic degradation of poly (ADP-ribose)-polymerase. However, ROS scavenger and pan-caspases inhibitor significantly blocked HHS-induced growth inhibition and apoptosis. Taken together, these findings suggest that HHS induces apoptosis through ROS- and caspase-dependent mechanisms and that HHS may be a potential chemotherapeutic agent for the control of human gastric cancer.

Inhibition of PI3K/AKT Signaling Pathway Enhances Cordycepin-Induced Apoptosis in Human Gastric Cancer Cells (인체위암 세포에서 PI3K/AKT 신호 전달계 차단에 의한 동충하초 유래 Cordycepin의 Apoptosis 유발 효과 증진)

  • Lee, Hye Hyeon;Jeong, Jin-Woo;Choi, Yung Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.6
    • /
    • pp.835-842
    • /
    • 2016
  • The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway plays a crucial role in cancer occurrence by promoting cell proliferation and inhibiting apoptosis. In the present study, we evaluated the effect of a PI3K inhibitor, LY294002, on the chemosensitivity of gastric cancer cells to cordycepin, a predominant functional component of the fungus Cordyceps militaris, in AGS human gastric cancer cells and investigated possible underlying cellular mechanisms. Our results revealed that cordycepin inhibited viability of AGS cells in a concentration-dependent manner and induced apoptosis, as determined by apoptotic cell morphologies and fluorescence-activated cell sorting analysis associated with attenuated activation of the PI3K/Akt signaling pathway. Treatment with cordycepin in combination with a subtoxic concentration of LY294002 enhanced cordycepin-induced cytotoxicity and apoptotic potentials in AGS cells. Sensitization of LY294002 to cordycepin-induced apoptosis was accompanied by activation of caspases (caspases-3, -8, and -9) and was concomitant with poly(ADP-ribose) polymerase cleavage. Moreover, LY294002 up-regulated pro-apoptotic Bax and enhanced truncation of Bid in cordycepin-treated AGS cells, which was connected with increased loss of mitochondrial membrane potential and release of cytochrome c from mitochondria to the cytosol. Taken together, these results indicate that inhibition of the PI3K/Akt signaling pathway could augment cordycepin-induced apoptosis in human gastric cancer cells by up-regulating caspase activity through mitochondrial dysfunction.

Anti-oxidative and Anti-cancer Activities of Treculia africana Extract in Human Colon Adenocarcinoma HT29 Cells (대장암세포주 HT29에서의 Treculia africana 추출물의 항산화 및 항암 활성 분석)

  • Oh, You Na;Jin, Soojung;Park, Hyun-jin;Kim, Byung Woo;Kwon, Hyun Ju
    • Journal of Life Science
    • /
    • v.25 no.5
    • /
    • pp.515-522
    • /
    • 2015
  • Treculia africana Decne, a breadfruit species, is native to many parts of West and Tropical Africa. The breadfruit belongs to the family Moraceae and is one of the four members of the genera Treculia. The crude extract of T. africana has been used in folk medicine as an anti-inflammatory agent for various ailments, such as whooping cough. In this study, we evaluated the anti-oxidative and anti-cancer activities of the methanol extract of T. africana Decne (META) and the molecular mechanisms of its anti-cancer effects in human colon carcinoma HT29 cells. The META exhibited anti-oxidative activity through a DPPH radical scavenging capacity and inhibited cell growth in a dose-dependent manner in HT29 cells. META treatment induced apoptosis of HT29 cells, showing an increase in the percentage of both SubG1 cells and Annexin V-positive cells and the formation of apoptotic bodies in a dose-dependent manner. META-mediated apoptosis was associated with the up-regulation of the death receptor FAS and Bax and a decrease in the Bcl-2 expression. META-treated HT29 cells also showed the release of cytochrome c from the mitochondria into the cytosol, activation of caspase-3, caspase-8, and caspase-9, and proteolytic cleavage of poly ADP-ribose polymerase (PARP). These findings suggest META may exert an anti-cancer effect in HT29 cells by inducing apoptosis through both intrinsic and extrinsic pathways.

Enhancement of TRAIL-Mediated Apoptosis by Genistein in Human Hepatocellular Carcinoma Hep3B Cells: Roles of p38 MAPK Signaling Pathway (인체간암세포에서 genistein의 TRAIL에 의한 apoptosis 유도 상승효과에서 미치는 p38 MAPK signaling pathway의 영향)

  • Jin, Cheng-Yun;Park, Cheol;Park, Sang-Eun;Hong, Sang-Hoon;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.21 no.11
    • /
    • pp.1549-1557
    • /
    • 2011
  • Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can selectively induce apoptosis in many types of transformed cells; however, some human hepatocellular carcinoma cells are particularly resistant to the effects of TRAIL. Although genistein, a natural isoflavonoid phytoestrogen, has been shown to have pro-apoptotic activity against human cancer cell lines, little is known about the mechanism of genistein in terms of TRAIL-induced apoptosis. In the present study, it was investigated whether or not combined treatment with genistein and TRAIL synergistically induced apoptosis in Hep3B hepatocarcinoma cells. Results indicate that treatment with TRAIL in combination with nontoxic concentrations of genistein sensitized TRAIL-resistant Hep3B cells to TRAIL-induced apoptosis, which was associated with mitochondrial dysfunction. Further, the inhibition of p38 mitogen-activated protein kinase (MAPK) activation markedly decreased genistein and TRAIL-induced cell viability and apoptosis by enhanced truncation of Bid, increase of pro-apoptotic Bax, decrease of anti-apoptotic Bcl-2, and release of cytochrome c from mitochondria to cytoplasm. Activation of caspases and degradation of poly (ADP-ribose) polymerase induced by the combined treatment was also markedly increased by the inhibition of p38 MAPK, through the mitochondrial amplification step. In conclusion, our data suggest that genistein sensitizes TRAIL-induced-apoptosis via p38 MAPK-dependent pathway.

Repression of Cathepsin D Expression in Adipocytes by MicroRNA-145 (지방세포에서 microRNA-145에 의한 Cathepsin D의 발현 제어)

  • Kim, Hyun-Ji;Bae, In-Seon;Seo, Kang-Seok;Kim, Sang Hoon
    • Journal of Life Science
    • /
    • v.24 no.7
    • /
    • pp.798-803
    • /
    • 2014
  • Cathepsin D (CtsD), an aspartyl peptidase, is involved in apoptosis, resulting in the release of cytochrome C from mitochondria in cells. Here, we investigated microRNA regulation of CtsD expression in 3T3-L1 cells First, we observed the expression of CtsD in cells in response to doxorubicin (Dox). As expected, the level of CtsD mRNA was increased in 3T3-L1 cells exposed to Dox in a dose-dependent manner. Cellular viability of ectopically expressed CtsD cells was also decreased. Next, we used the miRanda program to search for particular microRNA targeting CtsD. MiR-145 was selected as a putative controller for CtsD because miR-145 had a high mirSVR score. In a reporter assay, the luciferase activity of cells containing the CtsD 3'-UTR region was decreased in cells transfected with miR-145 mimic compared to that of a control. The level of CtsD expression was down-regulated in preadipocytes ectopically expressing miR-145 and up-regulated by an miR-145 inhibitor. Cells also suppressed miR-145 expression when exposed to Dox. The miR-145 inhibitor reduced the cellular viability of 3T3-L1 cells. Taken together, these data suggest that miR-145 regulates CtsD-mediated cell death in adipocytes. These findings may have valuable implications concerning the molecular mechanism of CtsD-mediated cell death in obesity, suggesting that CtaD could be a useful therapeutic tool for the prevention and treatment of obesity by regulating fat cell numbers.

Antioxidative and Anticancer Activities of Julbernardia globiflora Extract in Human Colon Adenocarcinoma HT29 Cells (Julbernardia globiflora 추출물의 항산화 활성 및 인체 대장암 세포 HT29에 대한 항암 활성 분석)

  • Oh, You Na;Jin, Soojung;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.27 no.5
    • /
    • pp.545-552
    • /
    • 2017
  • Julbernardia globiflora, a tropical African tree widespread in Miombo woodland, has been used in folk medicine for the treatment of depression and stomach problems. However, the antioxidative and anticancer activities of J. globiflora remain unclear. The objective of this study is to evaluate the antioxidative and anticancer effects of methanol extract of J. globiflora (MEJG) and the molecular mechanism of its anticancer activity in human colon carcinoma HT29 cells. MEJG exhibited significant antioxidative effect with an $IC_{50}$ (concentration at 50% inhibition) value of $1.23{\mu}g/ml$ measuring by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and inhibited cell proliferation in a dose-dependent manner in HT29 cells. We found that MEJG induced apoptosis of HT29 cells with the increase of apoptotic cells and apoptotic bodies using Annexin V staining and 4,6-diamidino-2-phenylindole (DAPI) staining, respectively. The MEJG treatment showed the increase of Fas, a death receptor, and Bax, a pro-apoptotic protein, and the decrease of Bcl-2, an anti-apoptotic protein, resulting in the release of cytochrome c from the mitochondria into the cytosol and activation of caspase-3, -8 and -9. The apoptotic effects of MEJG were confirmed by cleavage of poly (ADP-ribose) polymerase (PARP). Collectively, these results suggest that MEJG may exert the anticancer effect in HT29 cells by inducing apoptosis via both the intrinsic and extrinsic pathways.