• Title/Summary/Keyword: Cytochrome c oxidase subunit 1

Search Result 175, Processing Time 0.03 seconds

Cloning and Sequencing of the Mitochondrial Cytochrome c Oxidase Subunit II Gene from Rhabditidae Family Nematode (Rhabditidae과 선충의 CO II 유전자 클로닝 및 염기서열 분석)

  • Lee, Sang Mong;Son, Hong Joo;Kim, Keun Ki;Hong, Chang Oh;Park, Hyean Cheal
    • Journal of Environmental Science International
    • /
    • v.28 no.1
    • /
    • pp.75-84
    • /
    • 2019
  • Cytochrome c oxidase subunit II gene(CO II gene) is subunit of cytochrome oxidase, which is complex IV of mitochondria electron transport system. It has been frequently used in molecular phylogenetic studies because the speed of its DNA variation is faster than that of nucleus. It is especially useful in phylogenetic study of molecular biology in insects. In this study, we cloned and sequenced CO II gene of mitochondria DNA from Rhabditidae family nematode. Our results showed that this gene is comprised of 696 base pairs(bp). In the analysis of similarity of this gene with other known genes of 14 species of nematodes in Rhabditida order, we identified that this gene has high similarity with that of Caenorhabditis briggsae(86.0%) and C. elegans(85.6%) in Rhabditidae family. On the meanwhile, it has very low similarity with that of Angiostrongylus cantonensis(31.8%) in Angiostrongylidae family and Metastrongylus salmi(31.6%) in Metastrongylidae family. Based on the results of this study, we suggest that this nematode is closely related with that of Caenorhabditis genus in Rhabditidae family.

Utility of taxon-specific molecular markers for the species identification of herbarium specimens: an example from Desmarestia japonica (Phaeophyceae, Desmarestiales) in Korea

  • Lee, Sang-Rae;Lee, Eun-Young
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.3
    • /
    • pp.8.1-8.6
    • /
    • 2018
  • Desmarestia japonica (Phaeophyceae, Desmarestiales) was recently established from the Japanese ligulate Desmarestia and is morphologically similar to D. ligulata. This species has been reported only from Japan. However, the taxonomic reports based on additional regional distributions are needed to clarify this taxonomic entity and its species boundaries. Because Desmarestia species have restricted distributions in Korea, we reexamined herbarium specimens of D. ligulata deposited at the National Institute of Biological Resources (South Korea). To improve the amplification efficiency of the polymerase chain reaction and avoid contamination by the DNA of other organisms, we developed taxon-specific molecular markers suitable for DNA barcoding of Desmarestia species. Nuclear ribosomal small subunit RNA (18S rDNA) and mitochondrial cytochrome c oxidase 1 (cox1) regions were selected as target DNA. As a result, both were successfully isolated from herbarium specimens of D. japonica acquired over 10 years. These molecular markers provide useful genetic information for herbarium specimens for which conventional molecular analysis is challenging.

Sequence comparisons of 28S ribosomal DNA and mitochondrial cytochrome c oxidase subunit I of Metagonimus yokogawai, M. takahashii and M. miyatai

  • Lee, Soo-Ung;Huh, Sun;Sohn, Woon-Mok;Chai, Jong-Yil
    • Parasites, Hosts and Diseases
    • /
    • v.42 no.3
    • /
    • pp.129-135
    • /
    • 2004
  • We compared the DNA sequences of the genus Metagonimus: M. yokogawai, M. takahashii, and M. miyatai. We obtained 288 D1 ribosomal DNA (rDNA) and mitochondrial cytochrome c oxidase subunit I (mtCOI) fragments from the adult worms by PCR, that were cloned and sequenced. Phylogenetic relationships inferred from the nucleotide sequences of the 28S D1 rDNA and mtCOI gene. M. takahashii and M. yokogawai are placed in the same clade supported by DNA sequence and phylogenie tree analysis in 28S D1 rDNA and mtCOI gene region. The above findings tell us that M. takahashii is closer to M. yokogawai than to M. miyatai genetically. This phylogenetic data also support the nomination of M. miyatai as a separate species.

Molecular Characterization of Hard Ticks by Cytochrome c Oxidase Subunit 1 Sequences

  • Gou, Huitian;Xue, Huiwen;Yin, Hong;Luo, Jianxun;Sun, Xiaolin
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.6
    • /
    • pp.583-588
    • /
    • 2018
  • Although widely studied, the natural diversity of the hard tick is not well known. In this study, we collected 194 sequences from 67 species, covering 7 genera of hard tick. The 5' region of the mitochondrial cytochrome c oxidase subunit 1 region (586 bp) has been used to investigate intra- and inter-species variation and the phylogenetic tree of neighbor joining method has been used for assessment. As a result, by comparing the K2P-distance of intra- and interspecies, 30 samples (15.2%) shown that interspecies distance was larger than the minimum interspecfic distance. From the phylogenetic analysis, 86.8% (49) of the species were identified correctly at the genus level. On deeper analysis on these species suggested the possibility of presence cryptic species. Therefore, further work is required to delineate species boundaries and to develop a more complete understanding of hard tick diversity over larger scale.

Brain Region and Sex-specific Changes in Mitochondrial Biogenesis Induced by Acute Trimethyltin Exposure

  • Jung Ho Lee;Eun Hye Jang;Soon Ae Kim
    • Clinical Psychopharmacology and Neuroscience
    • /
    • v.20 no.3
    • /
    • pp.474-481
    • /
    • 2022
  • Objective: In this study, we investigated sex- and region-specific effects of acute trimethyltin (TMT) exposure on mitochondrial biogenesis. Methods: We treated TMT to primary neuronal cultures and 4-week-old male and female mice. We measured the mitochondrial DNA copy numbers using the quantitative polymerase chain reaction method. We also measured mitochondrial biogenesis related genes (sirtuin-1, estrogen-related receptor alpha, cytochrome C oxidase subunit IV) by western blotting. Results: The mitochondrial DNA copy number increased in the primary hippocampal neuron; however, it decreased in the primary cortical neuron. The mitochondrial copy number increased in the hippocampus and decreased in the cortex in the TMT treated female mice, though the mitochondrial copy number increased in both cortex and hippocampus in the TMT treated male mice. TMT treatment increased sirtuin-1 expression in the male hippocampus but did not in the female brain. In the female brain, estrogen-related receptor alpha expression decreased in the cortex though there is no significant change in the male brain. The protein level of mitochondrial protein, cytochrome C oxidase subunit IV, increased in both cortex and hippocampus after TMT injection in male mice brain, but not in female mice brain. Conclusion: Our data suggest that acute TMT exposure induces distinct sex-specific metabolic characteristics in the brain before significant sexual maturation.

DNA Barcoding of the Marine Protected Species Parasesarma bidens (Decapoda: Sesarmidea) from the Korean Waters

  • Kim, So Yeon;Yi, Chang Ho;Kim, Ji Min;Choi, Woo Yong;Kim, Hyoung Seop;Kim, Min-Seop
    • Animal Systematics, Evolution and Diversity
    • /
    • v.36 no.2
    • /
    • pp.159-163
    • /
    • 2020
  • Parasesarma bidens(De Haan, 1835) has been designated as a marine protected species by the Act on conservation and management of marine ecosystems. This crab has been recorded only from Jeju-do and Geomun-do, Republic of Korea. In this study, we describe for the first time the mitochondrial cytochrome c oxidase subunit I(COI) sequences of P. bidens. The intra-specific genetic distance among the Korean populations and between the Korean and Chinese populations ranged from 0% to 0.9% and 1.9% to 2.7%, respectively. The inter-specific genetic distances among the four Parasesarma species ranged from 10.9% to 12.8%. The finding of this study will be helpful to better describe P. bidens using COI DNA barcodes and can be used as basic data for their restoration and conservation research.

First Report of Rust Disease Caused by Puccinia phragmitis on Rumex japonicus in Korea (Puccinia phragmitis에 의한 참소리쟁이 잎녹병 발생 보고)

  • Lee, Seung-Yeol;Park, Ji-Won;Kang, In-Kyu;Jung, Hee-Young
    • Research in Plant Disease
    • /
    • v.26 no.1
    • /
    • pp.53-56
    • /
    • 2020
  • Red spots symptoms were observed on the leaves of Rumex japonicus Houtt. in Goesan, Korea, in May 2019. Diseased leaf showing red spot and white-colored sori were found behind of diseased leaves. Aeciospores were confirmed and observed using a stereomicroscope, light microscope, and scanning electron microscope. They were globose or ovoid and measured 19.0-24.4×19.0-24.5 ㎛, with verrucae ornamentation. For the phylogenetic analysis, partial of large subunit rDNA region and cytochrome c oxidase subunit III were sequenced. As a result, the isolated fungus species showed high similarities with Puccinia prizeliana. Based on the previous report, morphological characters, phylogenetic analysis, it was confirmed as Puccinia phragmitis which have not been reported in Korea, and we firstly report this fungal agent on R. japonicus as P. phragmitis in Korea.

Molecular Characterization of Taenia multiceps Isolates from Gansu Province, China by Sequencing of Mitochondrial Cytochrome C Oxidase Subunit 1

  • Li, Wen Hui;Jia, Wan Zhong;Qu, Zi Gang;Xie, Zhi Zhou;Luo, Jian Xun;Yin, Hong;Sun, Xiao Lin;Blaga, Radu;Fu, Bao Quan
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.2
    • /
    • pp.197-201
    • /
    • 2013
  • A total of 16 Taenia multiceps isolates collected from naturally infected sheep or goats in Gansu Province, China were characterized by sequences of mitochondrial cytochrome c oxidase subunit 1 (cox1) gene. The complete cox1 gene was amplified for individual T. multiceps isolates by PCR, ligated to pMD18T vector, and sequenced. Sequence analysis indicated that out of 16 T. multiceps isolates 10 unique cox1 gene sequences of 1,623 bp were obtained with sequence variation of 0.12-0.68%. The results showed that the cox1 gene sequences were highly conserved among the examined T. multiceps isolates. However, they were quite different from those of the other Taenia species. Phylogenetic analysis based on complete cox1 gene sequences revealed that T. multiceps isolates were composed of 3 genotypes and distinguished from the other Taenia species.

Molecular Phylogenetic Study of the Barbel Steed (Hemibarbus labeo) in Seomjin River of Korea (한국 섬진강산 누치(Hemibarbus labeo)의 분자 계통유전학적 연구)

  • Park, Kiyun;Lee, Wan-Ok;Kwak, Ihn-Sil
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.3
    • /
    • pp.221-230
    • /
    • 2019
  • Barbel steed (Hemibarbus labeo) is a small freshwater fish species as semi-bottom dwellers distributed in eastern Asia. We carried out characterization of the cytochrome c oxidase subunit I (COI) gene from the mitochondrial DNA of H. labeo in the Sumjin River to identify the phylogenetic location of H. labeo in the genus Hemibarbus and Cyprinidae. Multiple alignment of the 577 bp COI sequence revealed high sequence homology (99~100%) between Seomjin River H. labeo. The nucleotide sequence similarity between H. labeo (HD1) and H. mylodon was 88.91% and that of H. longirostis was 88.81% among the three species found in Korea. In addition, the nucleotide sequence similarities of H. maculatus, H. meditus, H. umbrifer and H. barbus showed 98.97%, 97.20%, 96.87% and 98.85%, respectively. Phylogenetic analysis on seven species of the genus Hemibarbus showed that the H. labeo collected in this study formed two clades. One of which consisted of Hadong, Imsil, Kangjin. The other one formed a step with HD2, HD8 and HD9 of Hadong and the H. labeo reported in Busan, Asan and Seoul, Korea. Phylogenetic position of the H. labeo among Cyprinidae showed 0.143 for the evolutionary distance from Zacco platypus and 0.006 for the H. maculatus. In addition, the genetic position of the H. labeo among 28 species of Cyprinidae was found to be located in Group I, including Gobioninae fishes. The results of this study will provide key genetic information for the taxonomic comparison in Cyprinidae and study of model fish for pollution monitoring in freshwater environments.