• Title/Summary/Keyword: Cytochalasin

Search Result 121, Processing Time 0.032 seconds

Calcium Signaling of M II Oocyte during Chemical Activation of Calcium Ionopore and Cytochalasin B

  • Kim, Sung-Woo;Park, Jin-Ki;Park, Chun-Gyu;Lee, Ju-Young;Han, Joo-hee;Lee, Seung-Eun;Baek, Kyung-Nye;Chang, Won-Kyung
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.260-260
    • /
    • 2004
  • The calcium ionophore (A23187) has been used for activation of porcine oocytes from in vitro maturation by many researches. The signaling of calcium was known to be a primary factor of activation of MII oocyte by calcium ionophore. The calcium level was measured by an intensity of fluo 4 fluorescence and confocal microscope. The level was increased by 7% ethanol or 70 μM calcium ionophore but oscillation was not found. (omitted)

  • PDF

Novel Macrolide Actin-inhibitors Isolated from Sea Sponges

  • Karaki, Hideaki;Ozaki, Hiroshi
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.105-108
    • /
    • 2001
  • Several marine toxins with macrolide structure have been found to act on actin. One of these toxins is mycalolide B isolated from the genus Mycale. This compound belongs to macrolide antibiotics and consists of tris-oxazole with strong cytotoxic activity ($IC_{50}$: 10-50 nM for growth of L1210 murine leukemia cells). This compound was found to be an actin-depolymerizing agent with the mode of action distinct from that of the known actin inhibitor, cytochalasin D. Tolytoxin, a macrolide isolated from cyano-bacteria with similar chemical structure to mycalolide B, seems to have similar effect. Another macrolide compound, aplyronine A, showed the effects similar to those of mycalolide B. Although bistheonellide A, a dimeric macrolide, did not show a severing effect, it de polymerized F-actin and sequestered G-actin by forming 1 : 2 complex with G-actins. Swinholide A has a structure and effects similar to those of bistheonel-lide A. In conclusion, mycalolide B, tolytoxin, aplyronine A, bistheonellide A and swinholide A are the members of "actin de polymerizing macrolide" the mechanism of which is different from that of cytochalasin D.halasin D.

  • PDF

Effect of Exocytosis Factor on Spontaneous Zona Pellucida Hardening during in Vitro Culture of the Mouse Oocytes (생쥐 난자 배양시 외분비 관련 요소들이 자발적 투명대 경화 현상에 미치는 영향)

  • Kang, Hye-Na;Bae, In-Ha;Kim, Hae-Kwon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.21 no.1
    • /
    • pp.111-119
    • /
    • 1994
  • "Spontaneous" hardening of the zona pellucida of mouse oocytes during in vitro culture is most likely due to cortical granules exocytosis. Thus the purpose of the present study was to determine whether the exocytosis factor is involved in spontaneous zona pellucida hardening during in vitro culture of the mouse. The results obtained form these experiments were summarized as follows; 1. When a protein synthesis inhibitor(100${\mu}g$/ml puromycin) was added to the culture medium, it did not prevent spontaneous ZPH of mouse oocyte during in vitro culture. 2. Calmodulin antagonists (trifluoperazine and chlorpromazine) and calcium channel blocker (verapamil) had no inhibitory effect in spontaneous ZPH. 3. A microtubule assembly inhibitor, colcemid had some inhibitory effect on spontaneous ZPH. 4. Treatment with a microfillament formation blocker(cytochalasin-B) at 1${\mu}g$/ml concentration, resulted in the excellent inhibitory effect on spontaneous ZPH. However cytochalasin-B did not inhibit ethanol-induced ZPH.

  • PDF

Cytochalasin D Regulates Retinoic Acid Induced COX-2 Expression but not Dedifferentiation via p38kinase Pathway in Rabbit Articular Chondrocytes

  • Yu, Seon-Mi;Kim, Song-Ja
    • Biomedical Science Letters
    • /
    • v.15 no.4
    • /
    • pp.343-347
    • /
    • 2009
  • Cytochalasin D (CD) is known as a disruptor of actin cytoskeleton architecture in chondrocytes. We have studied the role of CD in retinoic acid (RA) caused dedifferentiation and inflammation responses in rabbit articular chondrocytes. We have examined the effect of CD on RA induced dedifferentiation of chondrocytes. CD inhibited RA induced dedifferentiation determined by Western blot analysis and Alcian blue staining in rabbit articular chondrocytes. Also, CD additionally reduced inflammation response molecules such as cyclooxygenase-2 (COX-2) and prostaglandin $E_2$ ($PGE_2$) in RA treated cells. Treatment of CD reduced phosphorylation of p38 by treatment of RA. Inhibiton of p38kinase with SB203580 reduced expression of COX-2 and production of $PGE_2$ by treatment of CD in RA treated cells. But, Inhibiton of p38kinase with SB203580 did not any relationship with effect of CD on RA caused dedifferentiation. In summary, our results indicate that CD regulates RA reduced expression of COX-2 and production of PGE2 via p38kinase pathway.

  • PDF

Intracellular Invasion of Staphylococcus aureus against Human Gingival Fibroblasts (The purp상구균의 인체 치은 섬유모 세포에 대한 세포내 침입)

  • Kim, Kang-Ju;Jung, Kyu-Yong
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.3
    • /
    • pp.685-695
    • /
    • 2002
  • 황색 포도상구균은 급성 구강 감염에 있어서의 병원균이다. 그러나 그러한 황색 포도상구균의 병원성 기전은 완전히 이해되지 않았다. 이전 실험에서 황색 포도상구균의 단백질 A와 골격근의 액틴 필라멘트는 인체 상피 세포로의 황색 포도상구균의 침입에 관여한다. 구강 내 감염에 있어서의 황색 포도상구균의 병원성 기전을 조사하기 위해 인체의 치은 섬유모 세포에 대한 침입이 연구되고 있다. 급성 구강 감염을 가진 환자로부터 분리된 ATCC 25923 황색 포도상구균과 OPT 2 황색 포도상구균의 침입은 시간(0-120분)에 의존한다는 사실을 밝혀냈다. 60분을 초과하는 배양시간은 다시 배양된 균집락수 증가를 가져왔다. 배지에 접종한 세균의 숫자가 증가할 때 (100?10,000,000 cfu/ml/well), 직선적으로 증가한다. 단백질 A가 결핍된 Wood 46 황색 포도상구균의 침입은 단백질 A가 발현된 균주(ATCC 25923과 OPT 2)의 침입보다 훨씬 낮았다. 액틴 필라멘트의 합성을 방해하는 Cytochalasin D는 인체 치은 섬유모세포로 황색 포도상구균 (ATCC 25923과 OPT 2)이 침입하는 것을 방해한다. 이러한 결과는 구강내 감염을 일으키는 황색 포도상구균의 병원성 기전이 세포내 침입에 관여하고, 황색 포도상구균 단백질 A와 골격근의 액틴 필라멘트가 인체 치은 섬유모세포로의 황색 포도상구균의 침입 조절에 관여한다는 것을 보여준다.

Comparison of Developmental Efficiency of Murine Somatic Cell Nuclear Transfer Protocol

  • Moon, Jeonghyeon;Jung, Miran;Roh, Sangho
    • Journal of Embryo Transfer
    • /
    • v.32 no.3
    • /
    • pp.81-86
    • /
    • 2017
  • The Somatic cell nuclear transfer (SCNT) method can be applied to various fields such as species conservation, regenerative medicine, farming industries and drug production. However, the efficiency using SCNT is very low for many reasons. One of the troubles of SCNT is that it is highly dependent on the researcher's competence. For that reason, four somatic cell nuclear injection methods were compared to evaluate the effect of hole-sealing process and existence of cytochalasin B (CB) on efficiency of murine SCNT protocol. As a results, the microinjection with the hole-sealing process, the oocyte plasma membrane is inhaled with injection pipette, in HCZB with CB was presented to be the most efficient for the reconstructed in SCNT process. In addition, we demonstrated that the oocytes manipulated in Hepes-CZB medium (HCZB) with CB does not affect the developmental rate and the morphology of the blastocyst during the pre-implantation stage. For this reason, we suggest the microinjection involving hole-sealing in HCZB with CB could improve SCNT process efficiency.

The Comparison of the Spontaneous Zona Pellucida Hardening and PMA-induced Zona Pellucida Hardening during in Vitro Culture of the Mouse Oocytes (생쥐 난자 배양시의 자발적 투명대 경화 현상과 PMA에 의한 투명대 경화 현상 비교)

  • Kang, Hye-Na;Bae, In-Ha;Kim, Hae-Kwon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.21 no.1
    • /
    • pp.99-110
    • /
    • 1994
  • One consequence of fertilization in mammals is an increased resistance of the zona pellucida (ZP) to proteases and various chemical reagents. This phenomenon has been called 'zona pellucida hardening' (ZPH), and it is generally accepted that it is caused by the secretory products of cortical granules released by the egg at fertilization. ZP of mouse oocytes maturing in vitro in a chemically defined medium becomes progressively more resistant to solubilization by chymotrypsin ("Spontaneous" ZP hardening). In the present study, it was aimed to find the specificity of spontaneous ZPH in relation to its possible relevance to the cortical reaction and the physiological block to polyspermy. When a maturation inhibitors, cAMP analog(dbcAMP) and phosphodiesterase inhibitor (IBMX) was added to culture medium, it prevent spontaneous ZPH of mouse oocyte during in vitro culture. Thus spontaneous ZPH requires GVBD, since it is prevented by those agents, which inhibit GVBD in vitro. However, culture for 3 hours in the presence of PMA(lOng/ml), a protein kinase C activator, resulted in ZPH without GVBD, thus suggesting that ZPH may be regulated independently apart from the event of GVBD. Pretreatment of mouse oocyte with FBS result in partially inhibitory effect on subsequent spontaneous ZPH. Induction of GVBD in vivo had a inhibitory effect on the spontaneous ZPH, but subsequent spontaneous ZPH. Induction of GVBD in vivo had a inhinbitory effect on the spontaneous ZPII, but had no inhibitory effect on PMA-induced ZPH. Treatment with a microfilament formation blocker(cytochalasin-B) at 1${\mu}g$/ml concentration, resulted in the excellent inhibitory effect on spontaneous ZPH. However cytochalasin-B did not inhibit PMA-induced ZPH. Thus this suggesting that spontaneuse ZPH had a different mechanism from PMA-induced ZPH.

  • PDF

Hexose Uptake and Kinetic Properties of the Endogenous Sugar Transporter(s) in Spodoptera frugiperda Clone 21-AE Cells

  • Lee Chong-Kee
    • Biomedical Science Letters
    • /
    • v.11 no.3
    • /
    • pp.327-332
    • /
    • 2005
  • Sf21 cells become popular as the host permissive cell line to support the baculovirus AcNPV replication and protein synthesis. The cells grow well on TC-100 medium that contains $0.1\%$ D-glucose as the major carbon source, strongly suggesting the presence of endogenous glucose transporters. However, unlike human glucose transporters, very little is known about the characteristics of the endogenoussugar transporter(s) in Sf21 cells. Thus, some kinetic properties of the sugar transport system were investigated, involving the uptake of 2-deoxy-D-glucose (2dG1c). In order to obtain a true measure of the initial rate of uptake, the uptake of $[^3H]2dGlc$ from both low $(100{\mu}M)$ and high (10 mM) extracellular concentrations was measured over periods ranging from 30 sec to30 min. The data obtained indicated that the uptake was linear for at least 2 min at both concentrations, suggesting that measurements made over a 1min time course would reflect initial rates of the jexpse uptake. To determine $K_m\;and\;V_{max}$ of the endogenous glucose transporter(s) in Sf21 cells, the uptake of 2dG1c was measured over a range of substrate concentrations $(50{\mu}M\~10mM)$ 2dG1c uptake by the Sf21 cells appeared to involve both saturable and non-saturable (or very low affinity) components. A saturable transport system for 2dG1c was relatively high, the $K_m$ value for uptake being < 0.45 mM. The $V_{max}$ value obtained for 2dG1c transport in the Sf21 cells was about 9.7-folds higher than that reported for Chinese hamster ovary cells, which contain a GLUT1 homologue. Thus, it appeared that the transport activity of the Sf21 cells was very high. In addition, the Sf21 glucose transporter was found to have very low affinity for cytochalasin B, a potent inhibitor of human erythrocyte glucose transporter

  • PDF

Cross-reactivity of Human Polyclonal Anti-GLUT1 Antisera with the Endogenous Insect Cell Glucose Transporters and the Baculovirus-expressed GLUT1

  • Lee, Chong-Kee
    • Biomedical Science Letters
    • /
    • v.7 no.4
    • /
    • pp.161-166
    • /
    • 2001
  • Most mammalian cells take up glucose by passive transport proteins in the plasma membranes. The best known of these proteins is the human erythrocyte glucose transporter, GLUT1. High levels of heterologous expression far the transporter are necessary for the investigation of its three-dimensional structure by crystallization. To achieve this, the baculovirus expression system has become popular choice. However, Spodoptera frugiperda Clone 9 (Sf9) cells, which are commonly employed as the host permissive cell line to support baculovirus replication and protein synthesis, grow well on TC-100 medium that contains 0.1% D-glucose as the major carbon source, suggesting the presence of endogenous glucose transporters. Furthermore, very little is known of the endogenous transporters properties of Sf9 cells. Therefore, human GLUT1 antibodies would play an important role for characterization of the GLUT1 expressed in insect cell. However, the successful use of such antibodies for characterization of GLUT1 expression m insect cells relies upon their specificity for the human protein and lack of cross-reaction with endogenous transporters. It is therefore important to determine the potential cross-reactivity of the antibodies with the endogenous insect cell glucose transporters. In the present study, the potential cross-reactivity of the human GLUT1 antibodies with the endogenous insect cell glucose transporters was examined by Western blotting. Neither the antibodies against intact GLUT1 nor those against the C-terminus labelled any band migrating in the region expected fur a protein of M$_r$ comparable to GLUT1, whereas these antibodies specifically recognized the human GLUT1. Specificity of the human GLUT1 antibodies tested was also shown by cross-reaction with the GLUT1 expressed in insect cells. In addition, the insect cell glucose transporter was found to have very low affinity for cytochalasin B, a potent inhibitor of human erythrocyte glucose transporter.

  • PDF

Effects of Pentoses on 2-deoxy-D-Glucose Transport of the Endogenous Sugar Transport Systems in Spodoptera frugiperda Clone 9 Cells

  • Lee, Chong-Kee
    • Biomedical Science Letters
    • /
    • v.15 no.1
    • /
    • pp.55-60
    • /
    • 2009
  • Insect cells such as Spodoptera frugiperda Clone 9 (Sf9) cells are widely chosen as the host for heterologous expression of a mammalian sugar transport protein using the baculovirus expression system. Characterization of the expressed protein is expected to include assay of its function, including its ability to transport sugars and to bind inhibitory ligands such as cytochalasin B. It is therefore very important first to establish the transport characteristics and other properties of the endogenous sugar transport proteins of the host insect cells. However, very little is known of the transport characteristics of Sf9 cells, although their ability to grow on TC-100 medium strongly suggested the presence of endogenous glucose transport system. In order to investigate the substrate and inhibitor recognition properties of the Sf9 cell transporter, the ability of pentoses to inhibit 2-deoxy-D-glucose (2dGlc) transport was investigated by measuring inhibition constants $(K_i)$. To determine the time period over which of sugar into the Sf cells was linear, the uptake of 2dGlc 0.1mM extracellular concentration was measured over periods ranging from 30 seconds to 30 minutes. The uptake was linear for at least 2 minutes at the concentration, implying that uptake made over a 1 minute time course would reflect initial rates of the sugar uptake. The data have also revealed the existence of a saturable transport system for pentose uptake by the insect cells. The transport was inhibited by D-xylose and D-ribose, although not as effective as hexoses. However, L-xylose had a little effect on 2dGlc transport in the Sf9 cells, indicating that the transport is stereoselective. Unlike the human erythrocyte-type glucose transport system, D-ribose had a somewhat greater apparent affinity for the Sf9 cell transporter than D-xylose. It is therefore concluded that Sf9 cells contain an endogenous sugar transport activity that in some aspects resembled the human erythrocyte-type counterpart, although the Sf9 and human transport systems do differ in their affinity for cytochalasin B.

  • PDF