• Title/Summary/Keyword: Cytochalasin

Search Result 121, Processing Time 0.021 seconds

Effect of D-Fructose on Sugar Transport Systems in Trichoplusia ni Cells and Photolabeling of the Trichoplusia ni Cell-Expressed Human HepG2 Type Glucose Transport Protein (Trichoplusia ni 세포에 내재하는 당 수송체에 D-fructose가 미치는 효과와 Trichoplusia ni 세포에 발현된 사람 HepG2형 포도당 수송 단백질의 photolabelling)

  • Lee, Chong-Kee
    • Journal of Life Science
    • /
    • v.24 no.1
    • /
    • pp.86-91
    • /
    • 2014
  • Trichoplusia ni cells are used as a host permissive cell line in the baculovirus expression system, which is useful for large-scale production of human sugar transport proteins. However, the activity of endogenous sugar transport systems in insect cells is extremely high. Therefore, the transport activity resulting from the expression of exogenous transporters is difficult to detect. Furthermore, very little is known about the nature of endogenous insect transporters. To exploit the expression system further, the effect of D-fructose on 2-deoxy-D-glucose (2dGlc) transport by T. ni cells was investigated, and T. ni cell-expressed human transporters were photolabeled with [$^3H$] cytochalasin B to develop a convenient method for measuring the biological activity of insect cell-expressed transporters. The uptake of 1 mM 2dGlc by uninfected- and recombinant AcMPV-GTL infected cells was examined in the presence and absence of 300 mM of D-fructose, with and without $20{\mu}M$ of cytochalasin B. The sugar uptake in the uninfected cells was strongly inhibited by fructose but only poorly inhibited by cytochalasin B. Interestingly, the AcMPV-GTL-infected cells showed an essentially identical pattern of transport inhibition, and the rate of 2dGlc uptake was somewhat less than that seen in the non-infected cells. In addition, a sharply labeled peak was produced only in the AcMPV-GTL-infected membranes labeled with [$^3H$] cytochalasin B in the presence of L-glucose. No peak of labeling was seen in the membranes prepared from the uninfected cells. Furthermore, photolabeling of the expressed protein was completely inhibited by the presence of D-glucose, demonstrating the stereoselectivity of labeling.

Effect of Cytochalasin B in Activation Medium on the Development of Rat Somatic Cell Nuclear Transfer Embryos

  • Roh, Sang-Ho
    • Reproductive and Developmental Biology
    • /
    • v.31 no.2
    • /
    • pp.109-113
    • /
    • 2007
  • This study was conducted to evaluate the effect of cytochalasin B (CB) treatment in the activation medium on the development of somatic cell nuclear transfer (SCNT) rat embryos. Fetal fibroblast cells were isolated from a Day 14.5 fetus, and the oocytes for recipient cytoplasm were recovered from 4-week old Sprague Dawley rats. After enucleation and nuclear injection, the reconstructed oocytes were immediately exposed to activation medium consisting of 10 mM $SrCl_2$ with or without CB for 4 hr, and formation of pseudo-pronucleus (PPN) was checked at 18 hr after activation. Then, they were transferred into day 1 pseudopregnant recipients (Hooded Wistar) or cultured for 5 days to check their developmental competence in vivo or in vitro. The number of PPN was not affected by CB treatment during the activation. However, CB treatment supported pre-implantation development of rat SCNT embryos. Embryos generated by the procedures of SCNT were also capable of implanting, with 1 implantation scar found from a recipient following the transfer of 87 SCNT embryos to four foster mothers. The result of the present study shows that rat SCNT embryo can develop to post-implantation stage following treatment with CB.

Tryptic Digestion and Cytochalasin B Binding Assay of the Human HepG2-Type Glucose Transporter Expressed in Spodoptera frugiperda Clone 21-AE Cells

  • Lee Chong-Kee
    • Biomedical Science Letters
    • /
    • v.11 no.1
    • /
    • pp.57-61
    • /
    • 2005
  • The number of sites at which a protein can be readily cleaved by a proteolytic enzyme is greatly influenced by its three-dimensional structure. For native, properly-folded proteins both the rate of cleavage and number of sites at which cleavage takes place are usually much less than for the denatured protein. In order to compare the tertiary structure of recombinant HepG2 type glucose transporter with that of its native counterpart in the erythrocyte, the pattern of tryptic cleavage of the protein expressed in insect cell membranes was therefore examined. After 30 minutes digestion, a fragment of approximate Mr 19,000-21,000 was generated. In addition to this, there were two less intensely stained fragments of apparent Mr 28,000 and 17,000. The pattern of labelling was similar up to 2 hours of digestion. However, the fragments of Mr 19,000-21,000 and Mr 17,000 were no longer detectable after 4 hours digestion. The observation of a very similar pattern of fragments yielded by tryptic digestion of the HepG2 type transporter expressed in insect cells suggests that the recombinant protein exhibits a tertiary structure similar if not identical to that of its human counterpart. Also, the endogenous sugar transporter(s) present in Sf21 cells did not bind cytochalasin B, the potent transporter inhibitor. Therefore, the baculovirus/Spodoptera frugiperda (Sf) cell expression system could be very useful for production of large amounts of human glucose transporters, heterologously.

  • PDF

Functional Assessments of Spodpotera Cell-expressed Human Erythrocyte-type Glucose Transport Protein with a Site-directed Mutagenesis

  • Lee, Chong-Kee
    • Biomedical Science Letters
    • /
    • v.14 no.2
    • /
    • pp.119-122
    • /
    • 2008
  • The baculovirus/insect cell expression system is of great value in the study of structure-function relationships in mammalian glucose-transport proteins by site-directed mutagenesis and for the large-scale production of these proteins for mechanistic and biochemical studies. In order to exploit this, the effects of substitution at the highly conserved residue glutamine 282 of the human erythrocyte-type glucose transporter have been examined by in vitro site-directed mutagenesis. The modified human transport protein has been expressed in Spodoptera frugiperda 21 cells by using the recombinant baculovirus AcNPV-GTL. To assess the functional integrity of the expressed transporter, measurements of the transport inhibitor cytochalasin B binding were performed, involving the membranes prepared from 4 days post infection with no virus, with wild-type virus or AcNPV-GTL virus. Data obtained showed that there was little or no D-glucose-inhibitable binding in cells infected with the wild type or no virus. Only the recombinant virus infected cells exhibited specific binding, which is inhibitable by D- but not by L-glucose. However, there was a notable reduction in the affinity for the potent inhibitor cytochalasin B when binding measurements of AcNPV-GTL were compared with those of AcNPV-GT, which has no substitution. It is thus suggested that although the modified and unmodified human transporters differed slightly in their affinity for cytochalasin B, the glutamine substitution did not interfere the heterologous expression of the human transporter in the insect cells.

  • PDF

Inhibition of Chondrogenesis by Cytochalasin D in High Density Micromass Culture of Chick Mesenchymal Cells: Its Effects on Expression of $\alpha$-Smooth Muscle Actin and P-cadherin

  • Yoo, Jeong-Ah;Park, Su-Jung;Kang, Shin-Sung;Park, Tae-Kyu
    • Animal cells and systems
    • /
    • v.5 no.3
    • /
    • pp.205-209
    • /
    • 2001
  • Mesenchymal cells from the leg buds of stage 24-chick embryos differentiated into chondrocytes when plated at high density. Treatment of high density micromass culture of chick mesenchymal cells with cytochalasin D(CD, 2 $\mu$M for 24 h) resulted in inhibition of chondrogenesis. CD treatment was found to affect the expression of the contractile protein $\alpha$-smooth muscle actin ($\alpha$-SM actin). In control cultures, $\alpha$-SM actin uniformly expressed from culture day 2, but the CD-treated cells induced expression of $\alpha$-SM actin from the first day of culture followed by a continuous increase. Expression of pan-cadherin (P-cadherin) decreased as chondrogenesis proceeded in the control culture, whereas the CD-treated cells showed sustained expression. These results propose a close connection of chondrogenic differentiation with expression of $\alpha$-SM actin and P-cadherin.

  • PDF

Electron Microscopic Study on the Role of Actin Filaments during the Formation of Bile Canaliculi in Isolated Rat Hepatocyte Culture System (흰쥐에서 분리 배양한 간세포의 담세관 형성에 있어서 액틴미세섬유의 역할에 관한 전자현미경적 연구)

  • Park, Chang-Hyun;Chang, Byung-Joon;Uhm, Chang-Sub
    • Applied Microscopy
    • /
    • v.29 no.4
    • /
    • pp.437-450
    • /
    • 1999
  • Bile canaliculi are the structure delivering bile secreted by hepatocytes into the bile passage. Bile secretion is mainly controlled by the cytoskeletal elements, mainly of actin in the microvilli, pericanalicular web. Most studies on the bile secretion have been done in viva situation, however, to control the various parameters in vitro culture system seem to be more useful. To set up an in vitro experimental system, the investigator isolated hepatocytes with an enzymatic method using a mixture of collagenase and hyaluronidase from normal Sprague-Dawley rat liver and cultured. Isolated hepatocytes were round and formed cords in culture. Microvilli covered the whole surface of hepatocytes. Bile canaliculi were formed between hepatocytes and were characterized by the presence of microvilli of various lengths and shapes mainly arising from small surface mounds. Actin filament core in the microvilli and pericanalicular actin web were incomplete. After cytochalasin D treatment, cultured hepatocytes were round but the surface were irregular with surfacen blebs, folds and grooves. Microvilli on the surface were scarce. Bile canaliculi were markedly dilated often with the detached junctional complexes. Bile canaliculi lacks microvilli almost completely and extended into the pericanalirular cytoplasm showing complex vacuolar and tubular structures by transmission electron mciroscopy. Pericanalicular actin web, intermediate filaments were hardly identified. Subsurface actin filaments were scattered scarcely under the cell membranes. These results suggest that hepatocytes isolated from rats can survive and form bile canaliculi in culture and the actin filaments are involved in the formation and/or maintenance of the bile canaliculi.

  • PDF

The effect of microfilament inhibitor on the Cryptosporidium infection in vitro

  • Yu, Jae-Ran;Choi, Saung-Don
    • Parasites, Hosts and Diseases
    • /
    • v.38 no.4
    • /
    • pp.257-261
    • /
    • 2000
  • This study was focused on the effects of microfilament inhibitor, Cytochalasin D (CD) on the invasiveness of sporozoites of Cryptosporidiun spp. into the host cells. MDCK and AGS cell lines were used as host cells for C. parvum and C. muris, respectively. When MDCK cells were pretreated with CD for 1 hr before inoculation of the sporozoites, C. parvum infection was significantly inhibited when compared to the control cells. These inhibitory effects of CD on the rate of infection were dose-dependent. In addition, C. muris infection was hampered when AGS cell lines were pretreated with CD. However, the capability of invasiveness of the sporozoites into the host cells was not greatly influenced by the pretreatment of sporozoites with CD before infection. These results suggest that microfilaments of host cells, rather than parasites, play an important role for the invasion of Cryptosporidium spp.

  • PDF

Functional Molecular Structure of Band 4.5 Protein of Human Erythrocyte Membrane (인체 적혈구막 Band 4.5 단백질의 기능적인 분자구조)

  • Hah, Jong-Sik
    • The Korean Journal of Physiology
    • /
    • v.20 no.2
    • /
    • pp.209-217
    • /
    • 1986
  • The functional molecular weight of band 4.5 polypeptide was measured by applying the classical target theory to radiation inactivation data of the cytochalasin B binding. Band 4.5 polypeptides purified from human erythrocyte membranes were irradiated at -45 to $-50^{\circ}C$ with an increasing dose of 1.5 MeV electron beam, and after thawing, cytochalasin B binding activities were assayed. Each activity measured was reduced as a simple exponential function of radiation dose. $D_{37}$, dose appeared to be 6.7 mega rads, from which the target size (radiation sensitive mass) of band 4.5 polypeptide was calculated to be 95,500 daltons. This result with other informations available in literature suggests that band 4.5 polypeptide may exist as a dimer in human erythrocytes.

  • PDF