• 제목/요약/키워드: Cylindrical shells

검색결과 316건 처리시간 0.024초

Al2O3 Nano-Coating by Atomic Layer Deposition

  • Min Byung-Don;Lee Jong-Soo;Kim Sang-Sig
    • Transactions on Electrical and Electronic Materials
    • /
    • 제4권3호
    • /
    • pp.15-18
    • /
    • 2003
  • Aluminum oxide ($Al_2O_3$) materials were coated conformally on ZnO nanorods by atomic layer deposition (ALD). The ZnO nanorods were first synthesized on a Si(100) substrate from ball-milled ZnO powders by a thermal evaporation procedure. $Al_2O_3$ films were then deposited on these ZnO nanorods by ALD at a substrate temperature of $300^{\circ}C$ using trimethylaluminum (TMA) and distilled water ($H_2O$). Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) images of the deposited ZnO nanorods revealed that amorphous $Al_2O_3$ cylindrical shells surround the ZnO nanorods. These TEM images illustrate that ALD has an excellent capability to coat any shape of nanorods conformally.

ATILA를 이용한 진행파 회전형 밸브리스 압전펌프의 진동 해석 (Vibration analysis of valveless Type Piezoelectric micro-pump by using ATILA)

  • 임종남;오진헌;박철현;임기조;김현후
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.215-216
    • /
    • 2008
  • Using the extensional vibration mode of PZT ring, a piezopump is successfully made. The PZT ring is polarized with thickness direction. The traveling extensional wave along the circumference of the ring is obtained by dividing two standing waves which are temporally and spatially phase shifted by 90 degrees from each other. The proposed piezopump is consisted of coaxial cylindrical shells that are bonded piezoelectric ceramic ring.

  • PDF

A review of numerical approach for dynamic response of strain gradient metal foam shells under constant velocity moving loads

  • Fenjan, Raad M.;Ahmed, Ridha A.;Hamad, Luay Badr;Faleh, Nadhim M.
    • Advances in Computational Design
    • /
    • 제5권4호
    • /
    • pp.349-362
    • /
    • 2020
  • Dynamic characteristics of a scale-dependent porous metal foam cylindrical shell under a traveling load have been explored within this article based on a numerical approach. Within the material texture of the metal foams, uniform and non-uniform porosities may be dispersed. Based upon differential quadrature method (DQM) and Laplace transforms, the equations of motion for a shear deformable scale-dependent shell may be solved numerically. Scale-dependent shell modeling has been provided based upon strain gradient elasticity. Solving the equations will give the shell deflection as a function of load speed. Also, it is reported that shell deflection relies on the porosity dispersion and strain gradient influences.

보강(補剛) 원통 Shell의 좌굴(挫屈) 및 최적보강(最適補强) (Buckling and Optimum Reinforcement of Axially Stiffened Cylindrical Shells)

  • 장창두;노완
    • 대한조선학회지
    • /
    • 제24권1호
    • /
    • pp.42-50
    • /
    • 1987
  • The energy expressions are formulated for the axially stiffened shell treating the stiffeners as discrete elements. The principle of minimum potential energy is employed to formulate the buckling equations for a simply supported, axially stiffened shell under uniform axial compression. The displacement functions are expended into double trigonometric series. The mode assuming method employed in this paper makes it possible to reduce the matrix size of the eigenvalue problem considerably. Effects are made to investigate the transition from overall buckling to local buckling and to verify the existence of the minimum stiffness ratio of stiffener as in the case of stiffened plate. The results of the calculation show that the critical stiffener size increase linearly as the length of the shell increases. The results also show that the overall buckling load decreases and the local buckling load has a nearly constant value as the length of the shell increases. The results show very good agreements with other computational available.

  • PDF

유한요소법을 활용한 압력용기의 설계 및 성형해석에 관한 연구 (A Study on the Process Design and Deformation Analysis for Pressure Vessels by Finite Element Method)

  • 한규택
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권4호
    • /
    • pp.460-467
    • /
    • 1998
  • The investigation deals with the manufacturing process design and deformation analysis for seamless pressure vessels Axisymmetric multistage deep drawing is a complex and important sheet metal forming process in the industry. In this study the process design for large size cylindrical shells with various thickness is performed and a general guideline for forming process design of pressure vessels will be suggested. Thus in this paper for the verification of the forming process design the forming analysis of pressure vessels will be carried out by PAM-STAMP which is on the basis of finite element analysis. In this case the formability of pressure vessels is evaluated using the results of computer simulation.

  • PDF

Ultimate Strength of 10 MW Wind Turbine Tower Considering Opening, Stiffener, and Initial Imperfection

  • Santos, Ralph Raymond;Cho, Sung-Jun;Park, Jong-Sup
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1318-1324
    • /
    • 2018
  • This paper evaluates the effects of door opening, collar stiffener, and initial imperfection on the ultimate strength of a 10 MW wind tower. The lower segment of the tower was modeled to investigate the ultimate strength using steel cylindrical shell elements of finite element program ABAQUS. The wind tower was classified into three categories; without opening nor stiffener (C1), with opening but no stiffener (C2), and with opening and stiffener (C3). The C2 and C3 were further divided into long axis and short axis categories depending on the position of the opening. Result from linear and nonlinear analyses shows that the bigger the opening the bigger the reduction in strength and the same thing goes for the initial imperfection ratio or ovality of the shell. Also, there is a significant decreased in strength as the initial imperfection ratio increases by as high as 18.08%.

수압을 받는 원통형 실린더의 초기부정을 고려한 좌굴해석 (Buckling Analysis of Circular Cylinders with Initial Imperfection Subjected to Hydrostatic Pressure)

  • 노인식;류재원;임승재;조상래;조윤식
    • 대한조선학회논문집
    • /
    • 제54권3호
    • /
    • pp.267-273
    • /
    • 2017
  • Pressure hulls of submerged structures are generally designed as circular cylinders, spheres or cones with form of axisymmetric shell of revolution to withstand the high external pressure of deep ocean. The compressive buckling (implosion) due to hydrostatic pressure is the main concern of structural design of pressure hull and many design codes are provided for it. It is well-known that the buckling behavior of thin shell of revolution is very sensitive to the initial geometric imperfections introduced during the construction process of cutting and welding. Hence, the theoretical solutions for thin shells with perfect geometry often provide much higher buckling pressures than the measured data in tests or real structures and more precise structural analysis techniques are prerequisite for the safe design of pressure hulls. So this paper dealt with various buckling pressure estimation techniques for unstiffened circular cylinder under hydrostatic pressure conditions. The empirical design equations, eigenvalue analysis technique for critical pressure and collapse behaviors of thin cylindrical shells by the incremental nonlinear FE analysis were applied. Finally all the obtained results were compared with those of the pressure chamber test for the aluminium models. The pros and cons of each techniques were discussed and the most rational approach for the implosion of circular cylinder was recommended.

곡률을 가진 적층복합재 구조에서의 저속충격손상 평가 (Damage Assessment of Curved Composite Laminate Structures Subjected to Low-Velocity Impact)

  • 전정규;권오양;이우식
    • Composites Research
    • /
    • 제14권2호
    • /
    • pp.22-32
    • /
    • 2001
  • 유한한 곡률을 가진 적층복합재 구조의 저속충격손상을 평가하기 위하여 곡률반경이 각각 50, 150, 300, 500 mm인 쉘 형태의 시편을 CFRP로 제작하여 충격실험을 행하고, 충격거동과 충격손상을 평판의 경우와 비교하여 고찰하였다. 실험결과는 비선형 유한요소해석의 결과와 비교하였다. 충격손상의 평가를 위해 충격거동을 측정한 결과 강성과 곡률반경이 쉘의 동적 충격거동에 큰 영향을 미치는 것을 확인하였으며, 충격거동과 충격손상은 밀접한 상호관계가 있으므로 구조의 곡률반경을 독립변수로 선정하여 충격손상을 평가하였다. 곡률반경이 감소하면서 복합재 쉘에는 동일한 충격조건에서 더 큰 최대 접촉력이 발생하였고, 가장 곡률이 심한 곡률반경 50 mm의 쉘에서는 평판의 약 1.5배에 이르는 최대 접촉력을 나타내었다. 따라서 동일한 충격조건 하에서 곡률반경 50 mm의 쉘에서는 평판의 경우보다 약 2.7때정도 더 큰 층간분리가 내부에 발생하였으며, 층간분리의 분포 또한 평판의 경우와는 달리 충격면에 가까운 계면에도 광범위하게 발생하는 경향이 곡륜반경이 감소할수록 더욱 현저하였다. 이는 곡률을 가진 구조가 평판 구조보다 손상저항성이 더 작은 것을 의미하므로 복합재료 설계 시 구조의 기하학적 형상을 반드시 고려하여야 한다.

  • PDF

Effect of the initial imperfection on the response of the stainless steel shell structures

  • Ali Ihsan Celik;Ozer Zeybek;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • 제50권6호
    • /
    • pp.705-720
    • /
    • 2024
  • Analyzing the collapse behavior of thin-walled steel structures holds significant importance in ensuring their safety and longevity. Geometric imperfections present on the surface of metal materials can diminish both the durability and mechanical integrity of steel shells. These imperfections, encompassing local geometric irregularities and deformations such as holes, cavities, notches, and cracks localized in specific regions of the shell surface, play a pivotal role in the assessment. They can induce stress concentration within the structure, thereby influencing its susceptibility to buckling. The intricate relationship between the buckling behavior of these structures and such imperfections is multifaceted, contingent upon a variety of factors. The buckling analysis of thin-walled steel shell structures, similar to other steel structures, commonly involves the determination of crucial material properties, including elastic modulus, shear modulus, tensile strength, and fracture toughness. An established method involves the emulation of distributed geometric imperfections, utilizing real test specimen data as a basis. This approach allows for the accurate representation and assessment of the diversity and distribution of imperfections encountered in real-world scenarios. Utilizing defect data obtained from actual test samples enhances the model's realism and applicability. The sizes and configurations of these defects are employed as inputs in the modeling process, aiding in the prediction of structural behavior. It's worth noting that there is a dearth of experimental studies addressing the influence of geometric defects on the buckling behavior of cylindrical steel shells. In this particular study, samples featuring geometric imperfections were subjected to experimental buckling tests. These same samples were also modeled using Finite Element Analysis (FEM), with results corroborating the experimental findings. Furthermore, the initial geometrical imperfections were measured using digital image correlation (DIC) techniques. In this way, the response of the test specimens can be estimated accurately by applying the initial imperfections to FE models. After validation of the test results with FEA, a numerical parametric study was conducted to develop more generalized design recommendations for the stainless-steel shell structures with the initial geometric imperfection. While the load-carrying capacity of samples with perfect surfaces was up to 140 kN, the load-carrying capacity of samples with 4 mm defects was around 130 kN. Likewise, while the load carrying capacity of samples with 10 mm defects was around 125 kN, the load carrying capacity of samples with 14 mm defects was measured around 120 kN.

유도초음파를 이용한 원통형 쉘의 열 라체팅 변형 탐지 (Detection of Thermal Ratcheting Deformation for Cylindrical Shells by Ultrasonic Guided Wave)

  • 주영상;이형연;김종범;박창규;이재한
    • 비파괴검사학회지
    • /
    • 제26권5호
    • /
    • pp.297-305
    • /
    • 2006
  • 액체금속로 원자로배플 및 상부내부구조물 등은 고온소듐의 자유액면에 접하기 때문에 소듐액면의 상하 이동으로 열 라체팅 손상이 발생할 수 있다. 액체금속로 내부구조물의 열 라체팅 변형 손상을 감지할 수 있는 가동중검사 기법의 개발이 필요하다. 본 연구에서는 유도초음파를 이용하여 원통형 내부구조물의 열 라체팅 변형 손상을 감지할 수 있는 검사 방법을 제시하였다. 원형통 구조물의 열 라체팅 변형 거동의 모사를 위해 SS 316L 재료의 원통 시험편을 제작하고 $550^{\circ}C$ 이상의 급격한 열하중을 가하면서 냉각수의 자유액면의 상하 이동 시험을 실시하였다. 스테인리스 강 재질의 박판에서의 유도초음파의 분산 특성을 분석하여 $A_0$ 모드를 열 라체팅 변형을 탐지할 수 있는 유효 모드로 선정하였다. 제작된 라체팅 변형 원통형 셀 구조물에서 원주방향으로 반복하여 회전하는 $A_0$ 모드의 전파시간차를 측정함으로써 열 라체팅 변형 탐지 가능성을 확인하였다.