• 제목/요약/키워드: Cylindrical Shell Structure

검색결과 159건 처리시간 0.027초

Creep-Fatigue Crack Growth Behavior of a Structure with Crack Like Defects at the Welds

  • Lee, Hyeong-Yeon;Kim, Seok-Hoon;Lee, Jae-Han;Kim, Byung-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제20권12호
    • /
    • pp.2136-2146
    • /
    • 2006
  • A study on a creep-fatigue crack growth behavior has been carried out for a cylindrical structure with weldments by using a structural test and an evaluation according to the assessment procedures. The creep-fatigue crack growth behavior following the creep-fatigue crack initiation has been assessed by using the French A16 procedure and the conservatism for the present structural test has been examined. The structural specimen is a welded cylindrical shell made of 316 L stainless steel (SS) for one half of the cylinder and 304 SS for the other half. In the creep-fatigue test, the hold time under a tensile load which produces the primary nominal stress of 45 MPa was one hour at $600^{\circ}C$ and creep-fatigue loads of 600 cycles were applied. The evaluation results for the creep-fatigue crack propagation were compared with those of the observed images from the structural test. The assessment results for the creep-fatigue crack behavior according to the French Al6 procedure showed that the Al6 is overly conservative for the creep-fatigue crack propagation in the present case with a short hold time of one hour.

A study on the dynamic instabilities of a smart embedded micro-shell induced by a pulsating flow: A nonlocal piezoelastic approach

  • Atabakhshian, Vahid;Shooshtaria, Alireza
    • Advances in nano research
    • /
    • 제9권3호
    • /
    • pp.133-145
    • /
    • 2020
  • In this study, nonlinear vibrations and dynamic instabilities of a smart embedded micro shell conveying varied fluid flow and subjected to the combined electro-thermo-mechanical loadings are investigated. With the aim of designing new hydraulic sensors and actuators, the piezoelectric materials are employed for the body and the effects of applying electric field on the stability of the system as well as the induced voltage due to the dynamic behavior of the system are studied. The nonlocal piezoelasticity theory and the nonlinear cylindrical shell model in conjunction with the energy approach are utilized to mathematically modeling of the structure. The fluid flow is assumed to be isentropic, incompressible and fully develop, and for more generality of the problem both steady and time dependent flow regimes are considered. The mathematical modeling of fluid flow is also carried out based on a scalar potential function, time mean Navier-Stokes equations and the theory of slip boundary condition. Employing the modified Lagrange equations for open systems, the nonlinear coupled governing equations of motion are achieved and solved via the state space problem; forth order numerical integration and Bolotin's method. In the numerical results, a comprehensive discussion is made on the dynamical instabilities of the system (such as divergence, flutter and parametric resonance). We found that applying positive electric potential field will improve the stability of the system as an actuator or vibration amplitude controller in the micro electro mechanical systems.

내압을 받는 벨로즈의 변형 거동에 관한 연구 (A Study on the Deformation Behaviour of Bellows Subjected to Internal Pressure)

  • 왕지석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권5호
    • /
    • pp.702-710
    • /
    • 1999
  • U-shaped bellows are usually used to piping system pressure sensor and controller for refriger-ator. Bellows subjected to internal pressure are designed for the purpose of absorbing deformation. Internal pressure on the convolution sidewall and end collar will be applied to an axial load tend-ing to push the collar away from the convolutions. To find out deformation behavior of bellow sub-jected to internal pressure the axisymmetric shell theory using the finite element method is adopted in this paper. U-shaped bellows can be idealized by series of conical frustum-shaped ele-ments because it is axisymmetric shell structure. The displacements of nodal points due to small increment of force are calculated by the finite element method and the calculated nodal displace-ments are added to r-z cylindrical coordinates of nodal points. The new stiffness matrix of the sys-tem using the new coordinates of nodal points is adopted to calculate the another increments of nodal displacement that is the step by step method is used in this paper. The force required to deflect bellows axially is a function of the dimensions of the bellows and the materials from which they are made. Spring constant is analyzed according to the changing geometric factors of U-shaped bellows. The FEM results were agreed with experiment. Using developed FORTRAN PROGRAM the internal pressure vs. deflection characteristics of a particu-lar bellows can be predicted by input of a few factors.

  • PDF

선체구조물(선체구조물)에 관한 비선형(비선형) 해석연구(해석연구) -압축하중하(壓縮荷重下)의 평판(平板)과 보강판(補剛板)의 극한강도해석(極限强度解析)- (On the Monlinear Analysis of Ship's Structures -Ultimate Strength Analysis of Plates and Stiffened Plates under Compressive Load-)

  • 구종도;이주성
    • 대한조선학회지
    • /
    • 제20권1호
    • /
    • pp.11-20
    • /
    • 1983
  • In this paper elastic-plastic large deflection analysis of ship structural members, plates, stiffened plates and cylindrical shallow shell, are performed by the finite element method. And for the consideration of the yielded propagation through the depth of the member, the layered element approach is employed. The present method is justified by comparing its results with those of experiment and others. As results, the nonlinear behavior and the ultimate strength curves are shown, which can be used in the design of the plates and the stiffened plates under compression, and the applicability to the shell structures is suggested. The analysis results are as followings. (1) The results of the approximate equations as well as those of buckling analysis may not guarantee precisely the safety of the structures in some cases and the optimum in other cases. Therefore they may not show the design criteria for the optimal design. (2) As the initial deflection increases, its effects on the ultimate strength of the structure generally increases, and the ultimate load, therefore, decreases. (3) This approach can be applied to the shell type structures. (4) The present method can be applied to the various structures composed of plate and beam members, for example, plates with hole and the stiffened plates with hole stiffened by spigot, doubler and/or stiffener, for the optimal design.

  • PDF

비선형 유체-구조물-지반 상호작용 고려한 원통형 액체저장탱크의 지진응답해석 (Earthquake Response Analysis of Cylindrical Liquid-Storage Tanks Considering Nonlinear Fluid-Structure Soil Interactions)

  • 이진호;조정래
    • 한국전산구조공학회논문집
    • /
    • 제37권2호
    • /
    • pp.133-141
    • /
    • 2024
  • 유체-구조물-지반 상호작용을 고려한 액체저장탱크의 유한요소 모형을 제시하고, 비선형 지진응답 해석기법을 정식화한다. 탱크 구조물은 기하 및 재료 비선형 거동을 고려할 수 있는 쉘 요소로 모델링한다. 유체의 거동은 acoustic 요소로 구현하고, interface 요소를 사용하여 구조물과 결합한다. 지반-구조물 상호작용을 고려하기 위해 지반의 근역과 원역을 각각 solid 요소와 perfectly matched discrete layer로 모델링한다. 예제 20만 kl급 액체저장탱크의 지진취약도 해석에 적용하여, 유연한 지반에 구조물이 놓인 경우 부지에서의 암반노두운동의 증폭 및 필터링으로 인해 지진취약도의 중앙값과 대수 표준편차가 감소하는 것을 관찰할 수 있다.

지반과 구조물사이의 상호작용을 고려한 변단면 도통형쉘의 해석 (I) -변단면 쉘의 역학적 특성 (I)- (An analysis of ground supported farm silo with variable thickness (I) -Part I mechanical characteristics of shell with Variable thickness-)

  • 조진구;조현영
    • 한국농공학회지
    • /
    • 제31권4호
    • /
    • pp.58-71
    • /
    • 1989
  • This study aims to develop a computerized program for analysis of the ground-supported cylindrical shell structure with step varied section and to find out its mechanical characteri- stics through application of the developed program to the analysis of a ensiled farm silo as a model structure. The thickness of wall and bottom-plate of farm silo is assumed to be step-varied and its detailed structural dimensions are presented in Tab. 1 and 2. Several numerical case studies show that sectional stresses of the sample structures are largely reduced by adopting "varied section" design technique. And, other major results ob- tained from this study are summarize4 as follows ; 1. The variation of wall-thickness has a great influence on bending stresses of wall. Ho- wever, the larger the relative thickness of bottom-plate is, the smaller the influence is. 2. The magnitude of thickness of projecting toe of bottom-plate has negligible effect on sectional stresses 3. The conventional design methodology, which assumes the bottom edge of wall as clam- ped on ground, is proved to be discarded through the numerical analysis. 4. It is found that the "varied section" design technique should get similar effects as in the case of thick bott6m-plate having uniform thickness. 5. The variation of wall-thickness has a considerable effect on the bending stresses of bo- ttom-plate. Especially, this phenomenon is very remarkable in its projecting toe. In some cases. the negative bending moment may be acted on.

  • PDF

쉘 구조물의 확률적 동적 민감도 해석에 관한 연구 (A Study on the Stochastic Sensitivity Analysis in Dynamics of Shell Structure)

  • 배동명;이창훈
    • 수산해양기술연구
    • /
    • 제34권3호
    • /
    • pp.328-338
    • /
    • 1998
  • It is main objective of this approach to present a method to analyse stochastic design sensitivity for problems of structural dynamics with randomness in design parameters. A combination of the adjoint variable approach and the second oder perturbation method is used in the finite element approach. An alternative form of the constant functional that holds for all times is introduced to consider the time response of dynamic sensitivity. The terminal problem of the adjoint system is solved using equivalent homogeneous equations excited by initial velocities. The numerical procedures are shown to be much more efficient when based on the fold superposition method : the generalized co-ordinates are normalized and the correlated random variables are transformed to uncorrelated variables, where as the secularities are eliminated by the fast Fourier transform of complex valued sequences. Numerical algorithms have been worked out and proved to be accurate and efficient : they codes whose element derivative matrices can be explicitly generated. The numerical results of two cases - 2-dimensional portal frame and 3/4-cylindrical shell structure - for the deterministic and stochastic sensitivity analysis illustrates in this paper.

  • PDF

필라멘트와인딩에 의해 제조된 Lattice 구조물의 설계 및 제작 연구 (Design and Fabrication of Filament Wound Composite Lattice Structures)

  • 도영대;정상기;이상우;손조화
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제34회 춘계학술대회논문집
    • /
    • pp.421-427
    • /
    • 2010
  • 이 논문은 필라멘트 와인딩 공법으로 제작된 복합재 lattice 구조물에 대한 연구이다. 복합재 lattice 구조물은 helical rib과 hoop rib 구조로 이루어져 있다. 이 구조는 탄소 섬유를 에폭시에 함침 시켜 섬유의 끊어짐이 없이 연속적으로 실리콘 고무 금형의 홈 안에 필라멘트 와인딩하여 제작한 것이다. 본 연구에서는 lattice 구조물의 helical rib의 각도, 두께, 폭, 간격등을 안전율에 대하여 최적화 하는 이론을 제시하였다. 그리고 lattice 구조물의 제작방법을 기술하고 해석 및 시험결과를 기술하였다.

  • PDF

원통구조의 최종강도 추정을 위한 효율적인 유한요소해석 (Efficient finite element analysis for the ultimate strength estimation of cylindrical structure)

  • 박치모
    • 한국해양공학회지
    • /
    • 제10권4호
    • /
    • pp.28-37
    • /
    • 1996
  • A finite element analysis code considering elasto-plastic large deformation is developed to predict the ultimate strength of circular cylinders subject to external pressure loading by introducing a new type of axisymmetric shell element which can take into account the plasticity effect due to the circumferential bending while drastically saving the computing efforts compared with the tree dimensional finite element analysis. It is observed that analsis results of present approach show good agreement with the test results of previous works. Parametric study gives the effects of initial imperfections on ultimate strength ahd this information is recommended to be used to modify the actual test data to the ones which can be used more reasonably in making empirical design formulas.

  • PDF

분말야금법으로 제조한 하모닉 구조재료의 신장플랜지 가공성 (Stretch-Flangeability of Harmonic Structure Material Manufactured by Powder Metallurgy Method)

  • 윤재익;이학현;박형근;;김형섭
    • 한국분말재료학회지
    • /
    • 제24권2호
    • /
    • pp.128-132
    • /
    • 2017
  • Harmonic structure materials are materials with a core-shell structure having a shell with a small grain size and a core with a relatively large grain size. They are in the spotlight because their mechanical properties reportedly feature strength similar to that of a sintered powder with a fine grain size and elongation similar to that of a sintered powder with a coarse grain size at the same time. In this study, the tensile properties, microstructure, and stretch-flangeability of harmonic structure SUS304L made using powder metallurgy are investigated to check its suitability for automotive applications. The harmonic powders are made by mechanical milling and sintered using a spark plasma sintering method at 1173 K and a pressure of 50 MPa in a cylindrical die. The sintered powders of SUS304L having harmonic structure (harmonic SUS304L) exhibit excellent tensile properties compared with sintered powders of SUS304L having homogeneous microstructure. In addition, the harmonic SUS304L has excellent stretch-flangeability compared with commercial advanced high-strength steels (AHSSs) at a similar strength grade. Thus, the harmonic SUS304L is more suitable for automotive applications than conventional AHSSs because it exhibits both excellent tensile properties and stretch-flangeability.