• Title/Summary/Keyword: Cylindrical Motor

Search Result 88, Processing Time 0.027 seconds

Chucking Compliance Compensation by Using Linear Motor (리니어 모터를 이용한 척킹 컴플라이언스 보상)

  • Lee, Seon-Gyu;Lee, Jin-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.15-22
    • /
    • 2002
  • This paper introduces a compensating system for machining error, which is resulted from chucking with separated jaws. In machining the chucked cylindrical workpiece, the deterioration of machining accuracy, such as out-of-roundness is inevitable due to the variation of the radial compliance of the chuck workpiece system which is caused by the position of jaws with respect to the direction of the applied force. To compensate the chucking compliance induced error, firstly roundness profile of workpiece due to chucking compliance after machining needs to be predicted. Then using this predicted profile, the compensated tool feed trajectory can be generated. And by synchronizing the cutting tool feed system with workpiece rotation, the chucking compliance induced error can be compensated. To satisfy the condition that the cutting tool feed system must provide high speed and high position accuracy, brushless linear DC motor is used. In this study, firstly through the force-deflection experiment in workpiece chucked lathe, the variation of radial compliance of chuck workpiece system is obtained. Secondly using the mathematical equation and cutting experiment result, the predicted profile of workpiece and its compensation tool trajectory are generated. Thirdly the configuration of compensation system using linear motor is introduced, and to improve the system performance, PID controller is designed. Finally the tracking performance of system is examined by experiment. Through the real cutting experiment, roundness is significantly improved.

A 100 HP HTS Motor Design and the Performance Analysis (100 HP급 고온초전도 모터의 설계 및 성능 해석)

  • 백승규;손명환;김석환;이언용;권영길
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.2
    • /
    • pp.31-37
    • /
    • 2002
  • A 100 〔HP〕 rated synchronous motor with superconducting rotating field winding has been designed based on the formulated equations established from 2 dimensional magnetic field distributions in a cylindrical coordinate The cross-section was drawn based on calculated design results via Fortran program and then modeled with FEM (Finite Element Method) to investigate the machine performances. First of all, the magnetic field distributions are analysed in many ways according to the field directions and the armature currents. Especially after the rotating Held winding is arranged with BSCCO-2223 high-temperature superconducting(HTS) pancake coils, the exerted magnetic field normally on the HTS tape is calculated through FEM. And the machine output power is calculated according to the torque ang1es which lie between the field and the armature main flux lines. Moreover, this Paper includes the eddy-current loss variations of a copper damper located between the field and the armature coils and design considerations of the 100 HP HTS motor utilizing ferro-magnetic material.

New Sensorless Control Strategy for a Permanent Magnet Synchronous Motor based on an Instantaneous Reactive Power (순시무효전력을 이용한 영구자석 동기전동기의 새로운 센서리스 제어)

  • 최양광;김영석;한윤석
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.4
    • /
    • pp.247-254
    • /
    • 2004
  • The mechanical informations such as the rotor speed and angle are required to operate the Cylindrical Permanent Magnet Synchronous Motor(PMSM). A resolver or encoder is typically used to supply the mechanical informations. This position sensor adds length to the machine, raises system cost, increases rotor inertia and requires additional devices. As the result, there has been a significant interest in the development of sensorless strategies to eliminate the position sensor. This paper presents an implementation of the new sensorless speed comtrol scheme for a PMSM. In the proposed algorithm, the line currents are estimated by a observer and the estimated speed can be yielded from the voltage equation because the information of speed is included in back emf. But the speed estimation error between the estimated and the real speeds is occured by errors due to measuring the motor parameters and sensing the line current and the input voltage. To minimize the speed estimations error, the estimated speeds are compensated by using an instantaneous reactive power in synchronously rotating reference frame. In this paper, the proposed algorithm is not affected by mechanical motor parameters because the mechanical equation is not used. The effectiveness of algorithm is confirmed by the experiments.

Study on the Design and Manufacture of Solid Iron Motors (괴상 철심 전동기의 설계 및 시작에 관한 연구)

  • 이윤종;백수현
    • 전기의세계
    • /
    • v.27 no.4
    • /
    • pp.52-59
    • /
    • 1978
  • This paper is prepaped, based upon its foundation of the design, first studying the rotor impedance of single and double layer cylindrical induction motor with solid iron rotor, and then inducing torque equation, from it. Classified were some design factors for this design from the result for above and there carried out the evidence of these design and theory after making experimental motors with solid iron rotors and examining torque characteristics.

  • PDF

A Study of Cylindrical Linear Induction Motor with Open Slit (오픈 슬릿을 가진 선형 유도 전동기의 특성연구)

  • Yoo, Soo-Yeub;Kang, Myung-Bub
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.331-333
    • /
    • 2001
  • 원통 모양의 선형 유도 전동기를 구성하고 코일의 밖에 위치한 코일에 전류가 유도되며 이때 코일의 축방향과 이에 수직인 방향으로 힘이 유도되며, 이때 힘의 특성이 유도 전동기의 특성을 지님을 밝혀 내었다. 이 힘은 두 코일의 축이 어긋나서 생기는 힘과, 드라이브 코일의 open slit의 정도에 따라 다른 것을 밝혔다.

  • PDF

Design and Speed Control of ER Brake System Using GER Fluids (GER 유체를 이용한 ER Brake System의 설계 및 속도 제어)

  • Yook, J.Y.;Choi, S.B.;Yook, W.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.4
    • /
    • pp.365-371
    • /
    • 2012
  • This paper presents robust control performance of a direct current(DC) motor with brake system adopting a giant electrorheological(GER) fluid, whose distinguished feature is an extremely high value of yield stress. As a first step, Bingham characteristics of the GER fluid is experimentally investigated using the Couette type electroviscometer. A cylindrical type of ER brake is then devised based on the Bingham model, and its braking torque is evaluated. Structural analysis of ER break is performed using ANSYS. After formulating the governing equation of motion for the DC motor with ER brake system, a sliding mode control algorithm, which is very robust to external disturbances and parameter uncertainties, is synthesized and experimentally realized in order to achieve desired rotational speed trajectories. The tracking responses of the control system are then evaluated and verified by presenting speed control performance.

Characteristics Analysis of Tubular Linear Induction Motor Specially-designed for Elevator (엘리베이터용 TLIM의 특성해석)

  • Im, Dal-Ho;Kim, Young-Joong;Yoon, Sang-Baeck;Hwang, Sang-Yeon
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.612-614
    • /
    • 1992
  • This paper presents the analysis method of TLIM, for the purpose of developing linear induction motor drive for elevators. The transfer matrix to multilayer on cylindrical coordinate is derived. The equivalent circuit constructed from coupling complex phasor makes it possible to obtain characteristics of TLIM. The validity of the method lo verified by comparing the experimental and theoretical results for a pilot machine in locked status.

  • PDF

Analysis on Eddy Current Losses of High Speed Permanent Magnet Synchronous Motor for Turbo Compressor according to Voltage Source Driving (전압 구동 방법에 따른 터보 압축기용 초고속 영구자석 동기 전동기의 회전자 손실 해석)

  • Jang, Seok-Myeong;Kim, Hyun-Kyu;Ko, Kyoung-Jin;Lee, Sung-Ho;Hong, Young-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.712_713
    • /
    • 2009
  • This paper deals with the analysis on eddy current looses of high speed permanent magnet synchronous motor (PMSM) for turbo compressor according to voltage source driving. This paper presents analytical procedures for calculation of the eddy current losses using Poynting theorem. On the basis of the magnetic vector potential and a two-dimensional (2-D) cylindrical coordinate system, this paper derived analytical solutions of the eddy current looses using phase current analysis. The eddy current losses of each harmonic obtained by fast Fourier transform (FFT) analysis of phase current are with results obtained from finite-element method (FEM).

  • PDF

Design of Porcess Parameters in Axisymmetric Multi-step Deep Drawing by a Finite Element Inverse Method (유한요소 역 해석을 이용한 축대칭 다단계 박판성형에서의 공정변수 설계에 관한 연구)

  • Cho, Cheon-Soo;Lee, Choong-Ho;Huh, Hoon
    • Transactions of Materials Processing
    • /
    • v.6 no.4
    • /
    • pp.300-310
    • /
    • 1997
  • A finite element inverse method is introduced for direct prediction of blank shapes, strain distributions, and reliable intermediate shapes from desired final shapes in axisymmetric multi-step deep drawing processes. This mothod enables the determination of process disign. The approach deals with the Hencky's deformation theory. Hill's second order yield criterion, simplified boundary conditions, and minimization of plastic work with constraints. The algorithm developed is applied to motor case forming, and cylindrical cup drawing with the large limit drawing ratio so that it confirms its validity by demonstrating resonably accurate numerical results of each problem. Numerical examples reveal the reason of difficulties in motor case forming with corresponding limit diagrams.

  • PDF