• Title/Summary/Keyword: Cylindrical Enclosure

Search Result 27, Processing Time 0.023 seconds

Analysis of the Radiative Heat Transfer in a Cylindrical Enclosure with Obstacles Using the Discrete Ordinate and Finite Volume Method (구분종좌표법 및 유한체적법을 이용한 장애물이 있는 원통형 밀폐공간에서의 복사열전달 해석)

  • Kim, Seong-Woo;Kim, Il-Kyoung;Kim, Woo-Seung
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.347-352
    • /
    • 2000
  • In the present study, DOM and FVM have been used to analyze the radiative heat transfer in an axisymmetric cylindrical enclosure with obstacles. Heat flux distributions on the wall of enclosure form DOM and FVM are compared to those from simplified zone analysis for a nonparticipating medium. The comparison of DOM and FVM is also presented. Results show that there is a good agreement between FVM and simplified zone analysis. In addition, the effect of the thickness of the obstacle on the results is considered. Heat flux distribution on the surface of the obstacle is also presented.

  • PDF

Influence of Pyrolyzing Fuel Disposition on Combustion Phenomena in a Cylindrical Enclosure (원형공간내 열분해 연료의 공간배치가 연소현상에 미치는 영향)

  • Han, Cho-Young;Kim, Jeong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.680-685
    • /
    • 2000
  • Investigation on ignition and flame propagation of pyrolyzing fuel in a cylindrical enclosure is accomplished. The pyrolyzing fuel of cylindrical shape is located in an outer cylinder sustained at high-temperature. Due to gravity, the buoyancy motion is inevitably incurred in the enclosure and this affects the flame initiation and propagation behavior. The radiative heat transfer plays an important role since a high temperature difference is involved in the problem. Numerical studies have been performed over overheat ratio, and vertical fuel eccentricity. The location of flame onset is affected by the vertical eccentricity of inner pyrolyzing fuel as well as thermal conditions applied.

  • PDF

Radiation in axisymmetric cylindrical coordinates with the modified discrete-ordinates method (축대칭 원통좌표계에서 수정된 구분종좌법에 의한 복사열전달 해석)

  • Kim, Man-Yeong;Baek, Seung-Uk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.2
    • /
    • pp.213-220
    • /
    • 1998
  • The conventional discrete-ordinates method (DOM) is modified and developed for the analysis of two-dimensional axisymmetric cylindrical enclosure with curved wall. The objective of the present work is to extend the capability of the conventional DOM into a general axisymmetric geometry like nozzle-shaped enclosure, by adopting the arbitrary control angle as was done in the finite-volume method (FVM), while keeping the same two-dimensional solution procedure as in the conventional DOM. The present method is validated by applying it to three different benchmark problems of axisymmetric enclosure containing absorbing, emitting and scattering medium. Results presented in this work not only support the solution accuracy, but also moderate efficiency in the numerical calculation of axisymmetric radiation problem.

Effect of Pyrolyzing Fuel Position on Ignition and Flame Propagation in a Cylindrical Enclosure (원형공간내 열분해 연료의 위치변화에 따른 점화 및 화염전파 영향)

  • Han, Jo-Yeong;Kim, Jeong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.1
    • /
    • pp.133-142
    • /
    • 2001
  • Investigation on ignition and flame propagation of pyrolyzing fuel in a cylindrical enclosure is accomplished. The pyrolyzing fuel of cylindrical shape is located in an outer cylinder sustained at high-temperature. Due to gravity, the buoyancy motion is inevitably incurred in the enclosure and this affects the flame initiation and propagation behavior. The radiative heat transfer plays an important role since a high temperature difference is involved in the problem. Therefore in all cases presented here, the intrinsic radiation effects are considered. Numerical studies have been performed over various governing parameters, such as Grashof number, overheat ratio, and vertical fuel eccentricity. Depending on the Grashof number, the flame behavior is found to be totally different: a separated visible flame appears as the Grashof number reaches 10(sup)7. The location of flame onset is also affected by the vertical eccentricity of inner pyrolyzing fuel as well as thermal conditions applied.

A Numerical Study of Natural Convection within a Trapezoidal Enclosure (부채형 공간내의 자연대류에 관한 수치해석적 연구)

  • Bae, T.Y.;Bai, D.S.;Kwon, S.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.1
    • /
    • pp.11-19
    • /
    • 1992
  • The natural convection heat transfer within a trapezoidal enclosure with parallel cylindrical top and bottom walls at different temperatures and two adiabatic side walls are studied. A finite-difference method has been used to solve the governing equations numerically. The range of parameters studied herein are Prandtl number 0.7, aspect ratio from 0.5 to 4.0, Rayleigh number from $10^3$ to $3{\times}10^4$, enclosure tilt angle from 22.5 to 157.5 degrees. Mean and local Nusselt numbers are presented for discussing heat transfer characteristics within the enclosure. The heat balances for the hot and cold walls are differed by less than 1% for converged solutions, so these results appear to be reasonable.

  • PDF

A Study on the Inverse Analysis of Surface Radiation in a Cylindrical Enclosure (원통형상에서의 표면복사 역해석에 관한 연구)

  • KIm, Ki-Wan;Baek, Seung-Wook;Ryou, Hong-Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.705-712
    • /
    • 2004
  • An inverse boundary analysis of surface radiation in an axisymmetric cylindrical enclosure has been conducted in this study. Net energy exchange method was used to calculate the radiative heat flux on each surface, and a hybrid genetic algorithm was adopted to minimize an objective function, which is expressed by sum of square errors between estimated and measured or desired heat fluxes on the design surface. We have examined the effects of the measurement error as well as the number of measurement points on the estimation accuracy. Furthermore, the effect of a variation in one boundary condition on the other boundary conditions was also investigated to get the same desired heat flux and temperature distribution on the design surface.

A Study on the Inverse Radiation Analysis in a Cylindrical Enclosure (원통형상에서의 역복사 해석에 관한 연구)

  • Kim, Ki-Wan;Baek, Seung-Wook;Ryou, Hong-Sun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1516-1521
    • /
    • 2004
  • An inverse boundary analysis of surface radiation in an axisymmetric cylindrical enclosure has been conducted in this study. Net energy exchange method was used to calculate the radiative heat flux on each surface, and a hybrid genetic algorithm was adopted to minimize an objective function, which is expressed by sum of square errors between estimated and measured heat fluxes on the design surface. We have examined the effects of the measurement error as well as the number of measurement points on the estimation accuracy.

  • PDF

Inverse Boundary Temperature Estimation in a Two-Dimensional Cylindrical Enclosure Using Automatic Differentiation and Broyden Combined Method (자동미분법과 Broyden 혼합법을 이용한 2차원 원통형상에서의 경계온도 역추정)

  • Kim Ki-Wan;Kim Dong-Min;Baek Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.3 s.246
    • /
    • pp.270-277
    • /
    • 2006
  • Inverse radiation problems were solved for estimating boundary temperature distribution in a way of function estimation approach in an axisymmetric absorbing, emitting and scattering medium, given the measured radiative data. In order to reduce the computational time fur the calculation of sensitivity matrix, automatic differentiation and Broyden combined method were adopted, and their computational precision and efficiency were compared with the result obtained by finite difference approximation.. In inverse analysis, the effects of the precision of sensitivity matrix, the number of measurement points and measurement error on the estimation accuracy had been inspected using quasi-Newton method as an inverse method. Inverse solutions were validated with the result acquired by additional inverse methods of conjugate-gradient method or Levenberg-Marquardt method.

Relationship Analysis between Relative Humidity and Explosion Pressure of Hydrogen-Air and Acetylene-Air Mixtures in Flameproof Enclosure (내압방폭구조에서 수소-공기와 아세틸렌-공기 혼합가스의 폭발압력과 상대습도의 상관관계 분석)

  • Yong-Tae, Kim;Kihyo, Jung
    • Journal of the Korea Safety Management & Science
    • /
    • v.24 no.4
    • /
    • pp.101-107
    • /
    • 2022
  • To test a flameproof enclosure for the safety certificate, a reference pressure of explosion needs to be determined. However, the explosion pressure may be changed according to relative humidity of explosive gases. Therefore, the guideline on relative humidity should be recommended for measuring the explosion pressure for accurate and reproducible testings. This study examined the relationship of explosion pressure with relative humidity of hydrogen (31 vol %)-air and acetylene (14 vol %)-air mixture gases. The explosion pressures were measured by increasing the relative humidity of the gases by 10 % from dry state to 80 % in a cylindrical explosion enclosure of 2.3 L. on ambient temperature and atmospheric pressure (1 atm). The maximum explosive pressures were remained almost constant until the relative humidity reached 10 % for the hydrogen-air mixture and 20 % for the acetylene-air mixture. However, the maximum explosive pressures linearly decreased as the relative humidity increased. Based on the results of the study, it would be recommended to use 10 % relative humidity for the hydrogen-air mixture and 20 % for the acetylene-air mixture as the critical value in testing a flameproof enclosure.

The Insulation Characteristics by Conducting Particle in GIS (GIS내 금속이물 존재시 절연특성)

  • Cho, Kook-Hee;Kim, Jae-Chul;Kwak, Hee-Ro
    • Proceedings of the KIEE Conference
    • /
    • 2004.05b
    • /
    • pp.105-108
    • /
    • 2004
  • This paper describes the influence of conducting particle in the coaxial cylindrical electrodes under alternating voltage condition investigated using breakdown electric field and electro magnetics simulation method. Simulated particle-location in GIS chamber were the particle on electrode, the particle on enclosure and free moving particle. As results, it was founded that in case of breakdown electric field of the GIS chamber, breakdown electric field of particle on electrode was the lowest, that of free moving particle was middle and that of particle on enclosure was the highest. And in case of the electric field analysis with particle locations, electric field of particle on electrode was the highest that of lifted particle was middle and that of particle on enclosure was the lowest. This results can offer a practical reference ra the insulation design of domestic GIS.

  • PDF