• Title/Summary/Keyword: Cylindrical Cup

Search Result 65, Processing Time 0.02 seconds

Blank Design and Strain Prediction in Sheete Metal Forming Process (박판금속 성형공정에서의 블랭크 설계및 변형률 예측)

  • Lee, Choong-Ho;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1810-1818
    • /
    • 1996
  • A new finite elemetn approach is introduced for direct prediction of bland shapes and strain distributions from desired final shapes in sheet metal forming. The approach deals with the geometric compatibility of finite elements, plastic deformation theory, minimization of plastic work with constraints, and a proper initial guess. The algorithm developed is applied to cylindrical cup drawing, square cup drawing, and fron fender forming to confirm its validity by demonstratin reasonable accurate numerical results of each problems. Rapid calculation with this algorithm enables easy determination of various process variables for design of sheet metal forming process.

Optimal Design in cylindrical cup drawing by forming analysis (원형컵 드로잉의 성형해석에 의한 최적설계)

  • 정완진;김종호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.393-396
    • /
    • 2003
  • A systematic investigation for the process design in deep drawing is necessary to improve the quality of drawn cups. This study concentrates mainly on the influence of process design strategy on the product quality. Several types of process design were chosen from initial blank of 100mm in diameter to make final cup of 50mm in diameter. Forming analysis are carried out to find out optimal design in terms of drawing force. We assume that the case which shows minimum drawing force in the subsequent operations is the best case. Through experiments it is found that the case which shows minimum drawing force also results in minimum drawing force and better product quality than other case. Thus, it is shown that this design strategy is very effective in the improvement of quality in drawn cups.

  • PDF

Experimental Study on the Parameters Affecting Deep Drawing Process (딥 드로잉 공정에 미치는 영향인자에 관한 실험적 연구)

  • Jung, D.W.;Yang, H.I.;Lee, S.H.
    • Journal of Power System Engineering
    • /
    • v.7 no.2
    • /
    • pp.61-65
    • /
    • 2003
  • Sheet metal forming process is a non-linearity problem which Is affected by various process variables, such as geometric shape of punch and die, frictional characteristic, etc.. Therefore, the knowledge of the influence of the process variables is needed in the design of sheet metal working processes. In this paper, deep drawing tests for blank holding force, punch speed and lubrication between sheet material and tool were carried out to investigate the influence upon sheet formability. Experimental results were discussed about the defects on the deformation behaviors during the forming process.

  • PDF

A Study on the Intial Blank Design Using Ideal Forming Theory (이상적 변형이론을 이용한 박판 초기형상 설계에 관한 연구)

  • 박상후;윤정환;양동열;김용환;이장희
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.207-218
    • /
    • 1997
  • A new blank design method is introduced to predict the blank shape and the strain distribution in the sheet metal forming process. This method deals with only one step from the final shape to the initial blank using the ideal forming theory. Based on this theory, a three-dimensional membrane finite element code has been developed to design an initial blank in the sheet metal forming process. In this paper, the designs of initial blanks for forming a cylindrical cup, a rectangular cup, and a front fender are presented as examples. Also, it compares the two shapes, the target shape with the shape which is deformed from the initial blank using the FEM analysis code. The results illustrate the information that this direct design code is useful in the preliminary design state.

  • PDF

The Spinnability of Multi-step Cylindrical Cup in Spinning Process (스피닝 공정을 이용한 다단 원형 컵 형상의 성형성에 관한 연구)

  • 박중언;한창수;최석우;김승수;나경환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1016-1020
    • /
    • 2001
  • The spinning is a very effective manufacturing technology for short production runs in a variety of sizes and shapes, because it can form the cross-section or tubular parts various shapes. However extensive experimental and analytical research has not been carried out. In this study, and fundamental experiment was conducted to improve productivity with process parameter such as tool path, angle of roller holder(a), feed rate(v) and corner radius of forming roller(Rr). These factors were selected as variables in the experiment because they were most likely expected to have and effect on spring back. The clearance was controlled in order to achieve the precision product which is comparable to deep drawing one. And also thickness and diameter distribution of a multistage cup obtained by shear spinning process were observed and compared with those of a commercial product produced by conventional deep drawing.

  • PDF

Experimental Study on the Parameters Affecting Deep Drawing Process (딥 드로잉 공정에 미치는 영향인자에 관한 실험적 연구)

  • 정동원;이승훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1593-1596
    • /
    • 2003
  • Sheet metal forming process is a non-linearity problem which is affected by various process variables, such as geometric shape of punch and die, frictional characteristic, etc.. Therefore, the knowledge of the influence of the process variables is needed in the design of sheet metal working processes. In this paper, deep drawing tests for blank holding force, punch speed and lubrication between sheet material and tool were carried out to investigate the influence upon sheet formability. Experimental results were discussed about the defects on the deformation behaviors during the forming process.

  • PDF

Development of finite element analysis program for aluminum alloy sheets (알루미늄 합금 판재 성형성 예측을 위한 유한요소해석 프로그램 개발)

  • Kim S. T.;Moon M. S.;Chung W. J.;Yoon J. W.;Kim Y. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.291-294
    • /
    • 2005
  • Recently, the usage of aluminum alloy is rapidly increasing in automobile industry to achieve weight reduction for fuel efficiency. However, design of forming process of aluminum is more difficult than steel because of poor formability and severe springback. Since applications of finite element analysis for the design of sheet metal forming process are actively performed, it is required to conduct proper consideration of aluminum material behavior. In this study, a plane stress yield function Yld2000(Yoon et al., 2000), proven to describe well the anisotropic behavior of aluminum alloy, is implemented for FE analysis. One element test is considered to verify the validity of implementation of Yld2000 model. In addition, cylindrical cup drawing test is performed to verify earing shape of a drawn cup.

  • PDF

FE analysis of Al sheet metal considering planar anisotropy (평면이방성을 고려한 알루미늄 판재의 유한요소해석)

  • 윤정환;양동열;송인섭;정관수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.10a
    • /
    • pp.44-54
    • /
    • 1994
  • A variational formulation and the associated finite elemet equations have been derived for general three-dimensional deformation of a planar anisotropic rigid-plastic sheet metal which obeys the strain-rate potential proposed by BARLAT et al [13]. By using the natural convected coordinate system, the effect of geometric change and the rotation of planar anisotropic axes are considered efficiently. In order to check the validity of present formulation, a cylindrical cup and a square cup deep drawing test was modeled. good agreement was found between the FE simulation and the experiment. The results have shown that the present formulation for planar anisotropic deformation can be efficiently applied to the analysis of sheet metal working processes for planar anisotropic nonferrous metals.

  • PDF

Earing Predictions in the Deep-Drawing Process of Planar Anisotropic Sheet-Metal (평면 이방성 박판 딥드로잉 공정의 귀발생 예측)

  • 이승열;금영탁;정관수;박진무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.118-128
    • /
    • 1994
  • The planar anisotropic FEM analysis for predicting the earing profiles and draw-in amounts in the deep-drawing processes is introduced. An implicit, incremental, updated Lagrangian formulation with a rigid-viscoplastic constitutive equation is employed. Contact and friction are considered through the mesh-based unit vectors and the normal contact pressure. the consistent full set of governing relations, comprising equilibrium and geometric constraint equations, is appropriately linearized. Barlat's strain-rate potential is employed, whose in-plane anisotropic properties are taken into account with anisotropic coefficients and potential parameter. The linear triangular membrane elements are used for depicting the formed sheet. with the numerical simulations of deep drawing processes of flat-top cylindrical cup for the 2090-T3 aluminum effects on the earing behavior are examined. Earing predictions made for the 2090-T3 aluminum alloy sheet show good agreement with experiments, although some discrepancies were observed in the directional trend of cup height and thickness strains.

  • PDF

A Study on Strain Relief in a Square Cup Drawing (정사각용기 성형에서 변형률완화에 관한 연구 1)

  • Kim, Jin-Moo;You, Ho-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.31-38
    • /
    • 1999
  • Square cups have been drawn to 20mm~60mm in depth and displacements and strains have been analysed by FEM and experiment. Displacements and strains on the corner flange of square cups have been compared with those of cylindrical cups. The results have shown that shear strains take place on corner flanges of square cups, it is necessary to adopt effective strain for comparing of stains and the effective strains on the corner flange in square cups are smaller than those in cylindrical ones.

  • PDF