• 제목/요약/키워드: Cylindrical Cup

검색결과 65건 처리시간 0.02초

원형컵 드로잉 공정에 미치는 영향인지에 관한 실험적 연구 (Experimental Study on the Parameters Affect Cylindrical Cup Drawing Process)

  • 정동원;양경부;김광희
    • 소성∙가공
    • /
    • 제8권5호
    • /
    • pp.449-453
    • /
    • 1999
  • Sheet metal forming process is a non-linearity problem which is affected by various process variables, such as geometric shape of punch and die, frictional characteristic, etc.. Therefore, the knowledge of the influence of the process variables is needed in the design of sheet metal working processes. In this paper, cylindrical cup drawing tests for blank holding force, punch speed and lubrication between sheet material and tool were carried out to investigate the influence upon sheet formability. Experimental results were discussed about the defects on the deformation behaviors during the forming process.

  • PDF

굽힘을 고려한 원형 및 정사각형컵 딥드로잉 공정의 탄소성 유한요소해석 (Elastic-Plastic Finite Element Analysis of Deep Drawings of Circular and Square Cups Considering Bending)

  • 심현보;양동열
    • 대한기계학회논문집
    • /
    • 제18권7호
    • /
    • pp.1738-1750
    • /
    • 1994
  • Both cylindrical cup drawing and square cup drawing are analyzed using membrane analysis as well as shell analysis by the elastic-plastic finite element method. An incremental formulation incorporating the effect of large deformation and normal anisotropy is used for the analysis of elastic-plastic non-steady deformation. The computed results are compared with the existing experimental results to show the validity of the analysis. Comparisons are made in the punch load and distribution of thickness strain between the membrane analysis and the shell analysis for both cylindrical and square cup drawing processes. In punch load, both analyses show very little difference and also show generally good agreement with the experiment. For the cylindrical cup deep drawing, the computed thickness strain of a membrane analysis, however, shows a wide difference with the experiment. In the shell analysis, the thickness strain shows good agrement with the experiment. For the square cup deep drawing, both membrane and shell analyses show a wide difference with experiment, this may be attributable to the ignorance of the shear deformation. Concludingly, it has been shown that the membrane approach shows a limitation for the deep drawing process in which the effect of bending is not negligible and more exact information on the thickness strain distribution is required.

원형컵 드로잉의 공정설계 변화가 제품품질에 미치는 영향 (Influence of Process Design Scheme on Product Qualities in Cylindrical Cup Drawing)

  • 이재명;김종호;원시태
    • 소성∙가공
    • /
    • 제11권8호
    • /
    • pp.716-723
    • /
    • 2002
  • A systematic investigation for the process design in deep drawing is necessary to improve the quality of drawn cups. This study concentrates mainly on the influence of process desing scheme on the product qualities in cylindrical cup drawing. Three types of process design scheme were chosen in this study. Case 1 is to draw a finished cup of 50mm in diameter in one stage, Case 2 and Case 3 are redrawing the first drawn cups of 55, 65mm in diameter to the final size respectively. Through experiments the maximum drawing force in two-stage cup drawing can be reduced up to 24% as compared with that of one-stage cup drawing. In addition, Case 3 process results in better product qualities than the other two processes in terms of the distributions of thickness and hardness.

원형컵 드로잉의 공정설계 변화에 따른 제품품질에 미치는 영향 (Influence of Process Design Scheme on Product Qualities in Cylindrical Cup Drawing)

  • 이재명;이상민;최영윤;류호연;김종호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.82-85
    • /
    • 2002
  • A systematic investigation for process design in deep drawing is necessary for quality improvement of drawn cups. This study has been concentrated mainly on the influence of process design scheme on product qualities in cylindrical cup drawing. Three types of process design scheme were chosen in this study. That is, Case 1 is to finish drawing a cup of 50m in diameter in one stage, Case 2 and Case 3 are redrawing the drawn cups of 55, 65 mm in diameter to the final size respectively. Though experiments the maximum drawing force in two-stage cup drawing could be reduced up to 35% as compared with that of one-stage cup drawing. In addition, the Case 2 and Case 3 processes showed better product qualities than the Case 1 process when comparing distributions of thickness, hardness, dimensional accuracy.

  • PDF

굽힘이력을 고려한 원형컵 딥드로잉공정의 유한요소역해석 (Finite Element Inverse Analysis of the Cylindrical Cup Deep Drawing Process Considering Bending History)

  • 허지향;윤종헌;바오이동;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.340-343
    • /
    • 2007
  • This paper introduces a new approach to consider the bending history in finite element inverse analysis of the cylindrical cup drawing. A modified membrane element is adopted to add the bending-unbending energy to the total plastic energy on the bending-unbending region predicted from the geometry of the final shape and tools. The algorithm suggested was applied to a cylindrical cup deep drawing process. The blank shape and the distribution of the thickness strain are compared with those obtained from incremental finite element analysis. The comparison demonstrates the algorithm proposed reduces the difference between the results from inverse analysis and those from incremental analysis when the bending history is considered.

  • PDF

원통컵 디프드로잉 공정의 귀발생 예측 (Prediction of Earings in the Deep Drawing Processes of a Cylindrical Cup)

  • 이승열;이승열;금영탁;정관수;박진무
    • 소성∙가공
    • /
    • 제4권3호
    • /
    • pp.222-232
    • /
    • 1995
  • The planar anisotripic FEM analysis for predicting earing profiles and draw-in amounts in the deep-drawing process is introduced. An implicit, incremental, updated Lagrangian formulation with a rigid-viscoplastic constitutive equation is employed. Contact and friction are considered through the mesh-based unit vector and normal contact pressure. The consistent full set of governing relations, which is comprising euilbrium and geometric constraint equations, is appropriately linearized. Barlat's strain-rate potential is employed, whose in-plane anisotropic properties are taken into account with anisotropic coefficients and potential parameters. The linear triangular membrane elements are used for depicting the formed sheet. In the numerical simulations of deep drawing processes of a flat-top cylindrical cup for 2090-T3 aluminum alloy sheet show good agreement with experiments, although some discrepancies were observed in the directional trend of cup height and thickness strains.

  • PDF

컨트롤 암 성형을 위한 공정설계에 대한 연구 (A Study on the Process Design for Forming of Control Arm)

  • 이옥영;김기성;여홍태;천세영;허관도
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.365-367
    • /
    • 2009
  • The use of aluminum alloy has been interested in the automotive industry, because of its specific strength. And hollow extruded billet is more attractive than solid extruded billet but its forming application has to be precisely processed to satisfy the product quality. In this research, the process design of forming of control arm for the vehicle was studied by press bending process with hollow extruded billet. The middle protrusion portions and the middle cylindrical cup were processed separately according to the analysis. It was concluded that a useful sequence is to bend the side flange and the middle protrusion portions firstly, and then to form the middle cylindrical cup.

  • PDF

반구형 극소 드로인 제품의 두께분포 비교 (Thickness Distribution of Hemispherical Cup in Meso-Scale Deep Drawing Process)

  • 이기성;정효기;김종봉;김종호
    • 소성∙가공
    • /
    • 제20권1호
    • /
    • pp.36-41
    • /
    • 2011
  • Meso-scale or micro-scale forming of sheet metal parts has been recently considered as one of the important forming technologies with growing demand on meso/micro products for electric or medical devices. Experimental investigation on the cylindrical meso-cup drawing with hemispherical punch is carried out to examine the limit drawing ratio and thickness distribution of drawn cups. The working parameters chosen in this study are blank diameter, die-corner radius and blankholding force. It is found from the experiments that the limit drawing ratio of 2.4 can be achieved in the case of hemispherical cup drawing and uniform thickness distribution in wider region can be obtained compared with the results of conventional cup drawing.

클러치 마스터실린더 컵-시일 고무의 마찰계수 실험 연구 (An Experimental Study on The Friction Coefficient of Rubbers for Clutch Master Cylinder Cup-Seals)

  • 이재천;임문혁;이병수;장지현;정용승;허만대;최병기
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.112-118
    • /
    • 2003
  • The friction coefficients of the rubber for clutch master cylinder were experimentally measured in this study. The cylindrical rubber samples for primary cup-seal and secondary cup-seal were tested against the aluminum or the steel plates of master cylinder housing under the various conditions of brake oil temperatures and normal loads. Dry sliding friction coefficients were also measured under various load conditions. The test revealed following results. First, the friction coefficient under fluid lubrication condition in general decreases, as the oil temperature or normal load increases. Second, the steel plate of low surface roughness yielded comparatively low friction coefficient on the range of 0.30∼0.67. On the other hand, the aluminum plate of high surface roughness yielded high friction coefficient on the range of 0.31∼1.15. Third, the friction coefficient of dry surface contact decreases as the normal load increases. This is contrary to the general principle of friction coefficient between metal plates.

원형컵 디프 드로잉의 성형해석에 의한 공정설계 (New Design of Cylindrical Cup Deep Drawing by Forming Analysis)

  • 정완진;김종호;류제구
    • 소성∙가공
    • /
    • 제12권7호
    • /
    • pp.647-653
    • /
    • 2003
  • A systematic approach for the process design in deep drawing is necessary to improve the quality of drawn cups. This study concentrates mainly on the influence of process design strategy on the product quality. Different types of process design were chosen from initial blank of 100mm in diameter to make final cup of 50mm in diameter. In order to make this cup, we used 2-stage deep drawing. Forming analyses are carried out to find out better design in terms of drawing force. It is proposed that the process design, in which maximum drawing forces during successive operations are equal, is a more desirable one. Through experiment, it is found that the proposed case shows equivalent values in terms of maximum drawing force during successive operations in real process and can achieve the best product quality in terms of dimensional accuracy. Thus, it is shown that proposed design is very effective in the improvement of quality in drawn cups and may be extended to deep drawing with more stages.