• Title/Summary/Keyword: Cylinder theory

Search Result 214, Processing Time 0.024 seconds

Numerical analysis of interference galloping of two identical circular cylinders

  • Blazik-Borowa, E.;Flaga, A.
    • Wind and Structures
    • /
    • v.1 no.3
    • /
    • pp.243-253
    • /
    • 1998
  • The paper deals with numerical analysis of interference galloping of two elastically supported circular cylinders of equal diameters. The basis of the analysis is quasi-steady model of this phenomenon. The model assumes that both cylinders participate in process of interference galloping and they have two degrees of freedom. The movement of the cylinders is written as a set of four nonlinear differential equations. On the basis of numerical solutions of this equations the authors evaluate the correctness of this quasi-steady model. Then they estimate the dependence of a critical reduced velocity on the Scruton number, turbulence intensity and arrangements of the cylinders.

Weak Shock Waves Reflected from a Blunt Body (앞이 무딘 물체에서 반사되는 약한 충격파)

  • Chang, Se-Myong;Chang, Keun-Shik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.901-910
    • /
    • 1999
  • Investigated In this paper is the shock reflection from a blunt body, In particular, a circular cylinder of 20 mm diameter, for the weak shock impinging in the range 1<$M_s$ <2. Pressure and shock speed are measured for various shock strengths. Double-pulse holographic interferograms are taken to study the unsteady flow field at $M_s=1.34$. These experimental results are, in overall, well compared with the unstructured adaptive finite volume computation of the Euler equations performed in this study. Correlation of incident and reflected shocks and shock-shock locus obtained by experiment, computation, and theory are presented in parallel.

Ρ-Version Finite Element Analysis for Material Nonlinearity (재료적 비선형을 고려한 Ρ-Version 유한요소해석)

  • 정우성;홍종현;우광성;신영식
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.71-78
    • /
    • 1997
  • The high precision analysis by the p-version of the finite element method are fairly well established as highly efficient method for linear elastic problems, especially in the presence of stress singularity. It has been noted that the merits of p-version are accuracy, modeling simplicity, robustness, and savings in user's and CPU time. However, little has been done to exploit their benefits in elasto-plastic analysis. In this paper, the p-version finite element model is proposed for the materially nonlinear analysis that is based on the incremental theory of plasticity, the associated flow rule, and von-Mises yield criteria. To obtain the solution of nonlinear equation, the Newton-Raphson method and initial stiffness method, etc are used. Several numerical examples are tested with the help of the square plates with cutout, the thick-walled cylinder under internal pressure, and the center cracked plate under tensile loading. Those results are compared with the there cal solutions and the numerical solutions of ADINA software.

  • PDF

Analytical Study on the Discharge Gas Pulsation in a Twin Rotary Compressor (트윈 로타리 압축기의 토출 가스 맥동 해석)

  • Kim, Hyun-Jin;Ahn, Jong-Min;Cho, Kwang-Myoung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.697-703
    • /
    • 2003
  • For a single stage two cylinder rotary compressor, an analytical study has been made on the discharge gas pulsation. Discharge system of the twin rotary compressor consists of lower and upper mufflers and connecting passage holes between them, and cavities on both sides of the motor and passages between them. Acoustic modeling for the discharge system by transfer matrix method gives acoustic impedances at discharge valves so that gas pulsation at the valve sections can be obtained from discharge mass velocity. Since the mass velocity and the pressure pulsation at the valves are affected by each other, iteration should be made for convergence. Gas pulsations at other sections can also be calculated by using transfer matrix.

  • PDF

FATIGUE DURABILITY ASSESSMENT OF FULL-BEAD OF MLS GASKET USING FINITE ELEMENT ANALYSIS

  • CHO S.-S.;HAN B. K.;LEE J.-H.;CHANG H.;KIM B. K.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.513-517
    • /
    • 2005
  • A full-bead of multi-layer-steel engine head gasket, taking charge of the dynamic sealing of combustion chamber, is susceptible to fatigue failure. The fatigue durability of full-bead was assessed with the finite element analysis results and the high-cycle multi-axial fatigue theory. The assessment aimed to reveal the effects of the forming parameters and dimensions of full-bead. The results show that the selection of embossing parameters producing less deformation of bead plate is beneficial for the improvement of durability while the flatting has marginal influence. The fatigue durability also improves with the increase in the width of full-bead and the radial length of bore-side flat region. However, the dimensional effects are limited due to the occurrence of snap-through.

Numerical analysis of acoustic field inside sonar dome by using a beam tracing method and the theory of elastic wave propagation (빔 추적기법과 다층구조에서의 탄성파 전파이론을 적용한 소나돔 내부 음장 수치해석)

  • Han, Seung-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.2 s.25
    • /
    • pp.26-33
    • /
    • 2006
  • A sonar dome is basically designed and installed to protect sonar array from shocks, sea wave slaps and floating matters. The acoustic wave passing through sonar dome, however, can be distorted in magnitude and phase. This paper presents a numerical method for predicting the steady-state sound pressure on the surface of transducer array in the sonar dome and typical results of sonar beam pattern affected by sonar dome. A beam tracing model with phase information and a multi-layered elastic boundary model are involved. A full three-dimensional sonar dome is modeled as a GRP acoustic window, a rubber coated steel baffle and a rubber coated steel hull. A transducer array is modeled as thick steel cylinder. There are some assumptions such as incidence of plane wave, specular reflection on boundary and directionality of transducer element.

Model Reference Adaptive Control Using $\delta$-Operator of Hydraulic Servosystem (유압 서보계의 $\delta$연산자를 이용한 모델기준형적응제어)

  • Kim, Ki-Hong;Yoon, Il-Ro;Yum, Man-Oh
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.151-157
    • /
    • 2000
  • The MRAC theory has proved to be one of the most popular algorithms in the field of adaptive control, particularly for practical application to devices such as an hydraulic servosystem of which parameters are unknown or varying during operation. For small sampling period, the discrete time system becomes a nonminimal phase system. The $\delta$-MRAC was introduced to obtain the control performance of nonminimal phase system, because the z-MRAC can not control the plant for small sampling period. In this paper, $\delta$-MRAC is applied to the control of an hydraulic servosystem which is composed of servovalve, hydraulic cylinder and inertia load.

  • PDF

A GENERALIZED SIMPLE FORMULA FOR EVALUATING RADON-NIKODYM DERIVATIVES OVER PATHS

  • Cho, Dong Hyun
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.609-631
    • /
    • 2021
  • Let C[0, T] denote a generalized analogue of Wiener space, the space of real-valued continuous functions on the interval [0, T]. Define $Z_{\vec{e},n}$ : C[0, T] → ℝn+1 by $$Z_{\vec{e},n}(x)=\(x(0),\;{\int}_0^T\;e_1(t)dx(t),{\cdots},\;{\int}_0^T\;e_n(t)dx(t)\)$$, where e1,…, en are of bounded variations on [0, T]. In this paper we derive a simple evaluation formula for Radon-Nikodym derivatives similar to the conditional expectations of functions on C[0, T] with the conditioning function $Z_{\vec{e},n}$ which has an initial weight and a kind of drift. As applications of the formula, we evaluate the Radon-Nikodym derivatives of various functions on C[0, T] which are of interested in Feynman integration theory and quantum mechanics. This work generalizes and simplifies the existing results, that is, the simple formulas with the conditioning functions related to the partitions of time interval [0, T].

Onset of Buoyancy-Driven Convection in a Fluid-Saturated Porous Layer Bounded by Semi-infinite Coaxial Cylinders

  • Kim, Min Chan
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.723-729
    • /
    • 2019
  • A theoretical analysis was conducted of convective instability driven by buoyancy forces under transient temperature fields in an annular porous medium bounded by coaxial vertical cylinders. Darcy's law and Boussinesq approximation are used to explain the characteristics of fluid motion and linear stability theory is employed to predict the onset of buoyancy-driven motion. The linear stability equations are derived in a global domain, and then cast into in a self-similar domain. Using a spectral expansion method, the stability equations are reformed as a system of ordinary differential equations and solved analytically and numerically. The critical Darcy-Rayleigh number is founded as a function of the radius ratio. Also, the onset time and corresponding wavelength are obtained for the various cases. The critical time becomes smaller with increasing the Darcy-Rayleigh number and follows the asymptotic relation derived in the infinite horizontal porous layer.

Effect of Internal Fluid Resonance on the Performance of a Floating OWC Device

  • Cho, Il Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.216-228
    • /
    • 2021
  • In the present study, the performance of a floating oscillating water column (OWC) device has been studied in regular waves. The OWC model has the shape of a hollow cylinder. The linear potential theory is assumed, and a matched eigenfunction expansion method(MEEM) is applied for solving the diffraction and radiation problems. The radiation problem involves the radiation of waves by the heaving motion of a floating OWC device and the oscillating pressure in the air chamber. The characteristics of the exciting forces, hydrodynamic forces, flow rate, air pressure in the chamber, and heave motion response are investigated with various system parameters, such as the inner radius, draft of an OWC, and turbine constant. The efficiency of a floating OWC device is estimated in connection with the extracted wave power and capture width. Specifically, the piston-mode resonance in an internal fluid region plays an important role in the performance of a floating OWC device, along with the heave motion resonance. The developed prediction tool will help determine the various design parameters affecting the performance of a floating OWC device in waves.