• Title/Summary/Keyword: Cylinder theory

Search Result 215, Processing Time 0.029 seconds

The dispersion of the flexural waves in a compound hollow cylinder under imperfect contact between layers

  • Ipek, Cengiz
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.335-348
    • /
    • 2015
  • The influence of the interface imperfect bonding on the flexural wave dispersion in the bilayered hollow circular cylinder is studied with utilizing three-dimensional linear theory of elastodynamics. The shear-spring type model is used for describing the imperfect bonding on the interface between the layers and the degree of the imperfectness is estimated through the dimensionless shear-spring parameters which enter the mentioned model. The method for finding the analytical expressions for the sought values and dispersion equation are discussed and detailed. Numerical results on the lowest first and second modes are presented and analyzed. These results are obtained for various values of the shear-spring parameters. According to these results, in particular, it is established that as a results of the imperfection of the bonding between the layers the new branches of the dispersion related the first fundamental mode arise and the character of the dispersion curve related to the second mode becomes more complicated.

Exact analyses for two kinds of piezoelectric hollow cylinders with graded properties

  • Zhang, Taotao;Shi, Zhifei
    • Smart Structures and Systems
    • /
    • v.6 no.8
    • /
    • pp.975-989
    • /
    • 2010
  • Based on the theory of piezo-elasticity, the paper obtains the exact solutions of functionally graded piezoelectric hollow cylinders with different piezoelectric parameter $g_{31}$. Two kinds of piezoelectric hollow cylinders are considered herein. One is a multi-layered cylinder with different parameter $g_{31}$ in different layers; the other is a continuously graded cylinder with arbitrarily variable $g_{31}$. By using the Airy stress function method with plane strain assumptions, the exact solutions of the mechanic and electrical components of both cylinders are obtained when they are subjected to external voltage (actuator) and pressure (sensor), simultaneously. Furthermore, good agreement is achieved between the theoretical and numerical results, and useful conclusions are given.

High-Speed Penetration Detection and Correction of the 3-Dimensional(3D) Cloth Models Using a Virtual Cylinder in Geometrical Cloth Simulation (기하학적인 의복시뮬레이션에서 가상원통을 이용한 의복 3차원모델의 고속 관통검사와 수정)

  • Choi, Chang-Seok
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.10
    • /
    • pp.521-528
    • /
    • 2007
  • This paper proposes a new method for the high- speed penetration detection between the 3D human body model and the 3D cloth model using a virtual cylinder, and for the correction of the 3D cloth model. Penetration sometimes occurs locally, when the cloth model is adopted geometrically to the body. This method establishes the virtual cylinder surrounding the body model and the cloth model, and selects at a time the candidates of the penetrated points using the virtual cylinder. Finally, the penetrated points are detected among the candidates. Shift of the vertices or division of the edges in the penetrated points can correct the cloth model geometrically. This method works faster than the physical-based method. The latter requires the repeated detection of the penetrated points using bounding volume and the repeated corrections of the cloth model using dynamics.

Panoramic Navigation using Orthogonal Cross Cylinder Mapping and Image-Segmentation Based Environment Modeling (직각 교차 실린더 매핑과 영상 분할 기반 환경 모델링을 이용한 파노라마 네비게이션)

  • 류승택;조청운;윤경현
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.3_4
    • /
    • pp.138-148
    • /
    • 2003
  • Orthogonal Cross Cylinder mapping and segmentation based modeling methods have been implemented for constructing the image-based navigation system in this paper. The Orthogonal Cross Cylinder (OCC) is the object expressed by the intersection area that occurs when a cylinder is orthogonal with another. OCC mapping method eliminates the singularity effect caused in the environment maps and shows an almost even amount of area for the environment occupied by a single texel. A full-view image from a fixed point-of-view can be obtained with OCC mapping although it becomes difficult to express another image when the point-of-view has been changed. The OCC map is segmented according to the objects that form the environment and the depth value is set by the characteristics of the classified objects for the segmentation based modeling. This method can easily be implemented on an environment map and makes the environment modeling easier through extracting the depth value by the image segmentation. An environment navigation system with a full-view can be developed with these methods.

Autofrettage Analysis of Compound Cylinder with Power Function Strain Hardening Model (멱함수 가공경화 모델을 이용한 복합실린더의 자긴가공해석)

  • Park, Jae-Hyun;Lee, Young-Shin;Shim, Woo-Sung;Kim, Jae-Hoon;Cha, Ki-Up;Hong, Suk-Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.6
    • /
    • pp.488-495
    • /
    • 2008
  • In order to achieve long fatigue lifetimes for cyclically pressurized thick cylinders, multi-layered compound cylinder has been proposed. Such compound cylinder involves a shrink-fit procedure incorporating a monobloc tube which has previously undergone autofrettage. The basic autofrettage theory assumes elastic-perfectly plastic behaviour. Because of the Bauschinger effect and strain-hardening, most materials do not display elastic-perfectly plastic properties and consequently various autofrettage mo dels are based on different simplified material strain-hardening models, which is assumed that combination of linear strain-hardenig and power strain-hardening model. This approach gives a more accurate prediction than the elastic-perfectly plastic model and is suitable for different strain-hardening materials. In this paper, a general autofrettage model that incorporates the material strain-hardening relationship and the Bauschinger effect, based upon the actual tensile-compressive stress-strain curve of a material was proposed. The model was obtained using the von Mises yield criterion and plane strain condition. The tensile-compressive stress-strain curve was obtained by experiment. The parameters needed in the model were determined by fitting the actual tensile-compressive curve of the material. Finally, strain- hardening model was compared with elastic-perfectly plastic model.

The Transfer Matrix Method for Three-Dimensional Vibration Analysis of Crank Shaft (전달행렬법을 사용한 크랭크축의 3차원 진동해석)

  • 이정윤;오재응
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.152-159
    • /
    • 1997
  • This paper presents a vibration analysis method of crank shaft of six cylinder internal combustion engine. For simple analysis journal, pin and arm parts were assumed to have uniform section. Transfer Matrix Method was used, considering branched part and coordinate transformation part. Natural frequencies, modeshapes and transfer functions of crank shaft were investigated based upon the Euler beam theory: It was shown that the calculated natural frequencies, modeshapes agree well with the existing paper results.

  • PDF

Two-dimensional Stress Analysis Using Boundary Element Method (경계요소법(境界要素法)에 의한 2차원(次元) 응력해석(應力解析))

  • Chang-Doo,Jang;Sung-Hoon,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.4
    • /
    • pp.11-18
    • /
    • 1986
  • The fundamental theory and application of boundary element method for two-dimensional problem are introduced in this paper. Based on this boundary element procedure, several numerical calculations such as circular cavity problem, a thin plate with hole under tension and a long thick-walled cylinder under internal pressure are performed. The numerical results show fairly good agreement with exact solutions or results of finite element method.

  • PDF

Interference loads of two cylinders in a side-by-side arrangement

  • Blazik-Borowa, Ewa
    • Wind and Structures
    • /
    • v.9 no.1
    • /
    • pp.75-93
    • /
    • 2006
  • This paper presents a quasi-steady model of vibrations of two cylinders in a side-by-side arrangement. The cylinders have flexible support and equal diameters. The model assumes that both cylinders participate in the process of vibration, each of them having two degrees of freedom. The movement of cylinders is described by a set of four non-linear differential equations. These equations are evaluated on the basis of a numerical simulation and experimental data. Moreover many features of cylinder vibrations are found from numerical results and are described in this paper.

Finite element application of an incremental endochronic model to flexible pavement materials

  • Kerh, Tienfuan;Huang, C.Y.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.7
    • /
    • pp.817-826
    • /
    • 1998
  • A finite element model based on the incremental endochronic theory for flexible pavement materials was developed in this study. Three grid systems with eight-node cubic isoparametric elements, and different loading steps were used to perform the calculations for a specimen of circular cylinder. The uniaxial stress experimental results on an asphalt mixture at $60^{\circ}C$ in SHRP conducted by University of California at Berkeley were used to check the ability of the derived numerical model. Then, the numerical results showed isotropic response and deviatoric response on the specimen in a three dimensional manner, which provided a better understanding for a deformed flexible material under the specified loading conditions.

Friction Effect on the Powdered Metal Compaction (금속 분말 압축성형에서의 마찰 특성)

  • Jang, Dong-Hwan;Hwang, Beong-Bok
    • Transactions of Materials Processing
    • /
    • v.7 no.2
    • /
    • pp.114-126
    • /
    • 1998
  • A plasticity theory applicable to the powdered metal compaction is briefly summarized and its varia-tional form for the finite element analysis is described. The compaction processes of axisymmetric solid cylinder are simulated. For the analysis of the friction effect on compaction process the investigations were performed for different compact geometries. Efforts are focused on the transmitted pressure through the compact and density distributions within the compacts. Numerical results show that :(1) the friction coefficient could be selected simply from the transmitted force data by the single acting compaction test and the simulated results ; and (2) density variations within the compacts rely on the compact geometry such as height to diameter ration and the frictional condition between compact and dies.

  • PDF