• Title/Summary/Keyword: Cylinder power

Search Result 702, Processing Time 0.029 seconds

An Experimental Evaluation of a Hydraulic Tilting Actuator for a Diagnosis of Load Characteristics Acting on the Tilting Actuator of the Tilting Train (틸팅열차의 틸팅구동장치에 작용하는 부하특성 진단을 위한 유압식 틸팅 엑츄에이터의 실험적 평가)

  • Lee, Jun-Ho;Kim, Ho-Yeon;Lee, Byeong-Song;Lee, Hyung-Woo;Park, Chan-Bae;Kang, Chul-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.10
    • /
    • pp.921-927
    • /
    • 2012
  • In this paper we deal with a hydraulic tilting actuator to make a diagnosis of load characteristic acting on the tilting actuator of the tilting train. Tilting actuator in the tilting train plays a role of making tilt of the train when the train runs a curve section to make the train run without deceleration. However in the process of tilt the tilting actuator is affected by the load acting on the actuator, which has a possibility to make bogie vibration. In order to figure out the effect of the load on the tilting actuator a hydraulic tilting devices that are capable of tilting the train is proposed. The proposed devices are installed in the front bogie and in the rear bogie to make tilting of the train. The devices are consist of sensors that measure the load capacity of the actuator and displacement of the hydraulic cylinder stroke, control blocks to make synchronization of the two actuators, user interface block to monitor the status of the actuators. The effectiveness of the proposed hydraulic tilting actuators is presented by the experimental evaluation using actual tilting train.

A Study on Stratified Charge GDI Engine Development - Combustion Analysis according to the Variations of Injection Pressure and Load - (연소실 직접분사식 성층급기 가솔린기관 개발에 관한 연구 - 연료분사압력과 부하변동에 따른 연소특성 해석 -)

  • Lee, Sang Man;Jeong, Young Sik;Chae, Jae Ou
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1317-1324
    • /
    • 1998
  • In general, DI gasoline engine has the advantages of higher power output, higher thermal efficiency, higher EGR tolerance and lower emissions due to the operation characteristics of increased volumetric efficiency, compression ratio and ultra-lean combustion scheme. In order to apply the concept of stratified charge into direct injection gasoline engine, some kinds of methodologies have been adapted in various papers. In this study, a reflector was adapted around the injector nozzle to apply the concept of stratified charge combustion which leads the air-fuel mixture to be rich near spark plug. Therefore, the mixture near the spark plug is locally rich to ignite while the lean mixture is wholly introduced into the combustion chamber. The characteristics of combustion is analyzed with the variations of fuel injection pressure and load in a stratified -charge direct injection single cylinder gasoline engine. The obtained results are summarized as follows ; 1. The MBT spark timing approached to TDC with the increase of load on account of the increase of evaporation energy, but has little relation with fuel injection pressure. 2. The stratification effects are apparent with the increase of injection pressure. It is considered by the development of secondary diffusive combustion and the increase of heat release of same region, but proceed rapidly than diesel engine. Especially, in the case of high pressure injection (l70bar) and high load (3.0kgf m), the diffusive combustion parts are developed excessively and results in the decrease of peak pressure than in the case of middle load. 3. The index of engine stability, COVimep value, is drastically decreased with the increase of load. 4. To get better performance of DI gasoline engine development, staged optimizaion must be needed such as injection pressure, reflector, intake swirl, injection timing, chamber shape, ignition system and so on. In this study, the I50bar injection pressure is appeared as the optimum.

Effects of CNG Heating Value on Combustion Characteristics of a Diesel-CNG Dual-Fuel Engine (디젤-CNG 혼소엔진에서 CNG 발열량 변화가 연소 특성에 미치는 영향)

  • Kim, Yongrae;Jang, Hyeongjun;Lee, Janghee;Kim, Changgi
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.28-33
    • /
    • 2015
  • In this study, a dual fuel engine fueled with natural gas and diesel was tested to investigate the effects of heating value variation of CNG fuel. CNG substitution rate which is defined as the ratio of CNG and diesel supplied in a heating value basis was fixed at 80%. The higher heating value was varied from $10,400kcal/Nm^3$ to $9,400kcal/Nm^3$ by mixing nitrogen gas with pure CNG and diesel fuel was injected at a fixed injection timing. The engine test results showed that thermal efficiency and power output were decreased as the heating value of mixed CNG fuel was decreased. And the peak cylinder pressure was also decreased but the ignition delay time and the combustion duration and timing were almost same.

Study on the effective response method to reduce fire risk of wood fuel heating system (화목 연료 난방설비의 화재 위험 감소 방안에 관한 이론적 연구)

  • Park, Kyong-Jin;Lee, Bong-Woo;Lee, Guen-Cull;Nam, Ki-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.2
    • /
    • pp.163-171
    • /
    • 2019
  • Recently, rural housing in urban areas has been increasing due to the improvement of income level. With the increase of the construction of the power house, the installation of the heating system using the harmonious fuel for the purpose of heating and the beauty of the room is increasing rapidly. In addition to the increasing use of firewood heating equipment, the incidence of fire is also increasing. Analysis of the National Fire Data System of the Fire Department The result of the analysis of the National Fire Data System Many parts of the fire are incinerated by the accumulation of tar due to the incompleteness of periodic cleaning inside the cylinder. The distance between the fire extinguisher and the combustible materials such as ceiling, Resulting in fire. In addition, it was found that much of the fire of the firewood heating system in the time zone occurs during the sleeping and resting time and there is not enough time for the residents to cope. This, in turn, causes serious harm to the lives and property of the users of the pyrotechnic heating system. Therefore, in this study, domestic and foreign standards and laws related to fuel oil heating facilities were analyzed and 12 cases of fire accidents were analyzed. Through the revision of the fire prevention and firefighting facilities installation and maintenance law, the installation standards of the alarm and fire extinguishing facilities were presented.

Syngas/Diesel Dual Fuel Combustion in a Compression Ignition Engine with Different Composition Ratios of Syngas and Compression Ratios (합성가스/디젤 혼소압축착화 엔진의 합성가스 혼합비와 압축비에 따른 연소 및 배출가스 특성)

  • Lee, Junsun;Chung, Tahn;Lee, Yonggyu;Kim, Changup;Oh, Seungmook
    • Journal of ILASS-Korea
    • /
    • v.24 no.1
    • /
    • pp.35-42
    • /
    • 2019
  • Syngas is widely produced by incomplete combustion of coal, water vapor, and air (oxygen) in a high-temperature/high-pressure gasifier through a coal-gasification process for power generation. In this study, a simulation syngas which was mainly composed of $H_2$, CO, $CO_2$, and $N_2$ was fueled with diesel. A modified single cylinder compression ignition (CI) engine is equipped with intake port syngas supply system and mechanical diesel direct injection system for dual fuel combustion. Combustion and emission characteristics of the engine were investigated by applying various syngas composition ratios and compression ratios. Diesel fuel injection timing was optimized to increase indicated thermal efficiency (ITE) at the engine speed 1,800 rpm and part load net indicated mean effective pressure ($IMEP_{net}$) 2 to 5 bar. ITE of the engine increased with the $H_2$ concentration, compression ratio and engine load. With 45% of $H_2$ concentration, compression ratio 17.1 and $IMEP_{net}$ 5 bar, ITE of 41.5% was achieved, which is equivalent to that of only diesel fuel operation.

A Study on the Fermentative Abilities and Baking Properties of Commercial Yeast (시판 빵 효모의 발효 특성 및 제빵성에 관한 연구)

  • Kim Won-Joo;Hahn Young-Sook
    • Korean journal of food and cookery science
    • /
    • v.20 no.5
    • /
    • pp.529-536
    • /
    • 2004
  • In this study, the author examined the fermentative abilities and baking properties of commercial baker's yeasts and suggested the fundamental data for the development of the yeast products industry. Carbon dioxide production, expansion abilities of doughs, and maltose fermentative abilities were measured with commercial yeasts. The fermentative abilities of various bread doughs were determined in comparison to a reference yeast and a selected yeast from commercial yeast. Various breads were prepared by these two yeasts and their sensory properties were evaluated. Y7, followed by Y5 and Y4, showed higher ability than any other commercial yeasts in the gassing power of the dough, as measured by a Meissle fermenter. In the expansion abilities of the doughs made from various yeasts by M-Cylinder, Y7, followed by Y4 and Y5, showed the best expansion ability the results were similar to those for gassing power. Therefore, Y7 was selected. The maltose fermentative abilities of various yeasts in Atkin's liquid medium showed a higher value in Y5, Y7 and Y 4. Selected yeast Y7 and the reference yeast K were used for determining the fermentative abilities of various bread doughs. For the various breads prepared by K and Y7, the qualities of the breads such as volume, weight and specific volume were measured. The volume by Y7 was higher in the straight dough bread, and that by K was higher in the sponge dough bread. In the sweet dough bread, both Y7 and K were excellent groups for it. Sensory properties of various breads made from K scored high on the items such as external properties and color in the straight dough bread. It also acquired a good score on the item of the crusts in the sweet dough bread. The overall acceptability of Y7 and K were similar.

The Purchasing Trends of Purchase of Functional Progressive Addtions Lenses and Correlation Analysis of Binocular Function Value (기능성누진렌즈 구매고객의 구매동향 및 양안시기능값 상관성 분석)

  • Kim, Dong-min;Lee, Gi-yung;Park, Hyun-ju
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.2
    • /
    • pp.255-261
    • /
    • 2015
  • Purpose: purchasing status and understanding trends of Functional progressive addtions lenses buyers', Correlation analysis of the Binocular Function value to determine ADD then can be apply sales and prescriptions. Methods: Years 2011 to 2014, 298 patients who were prescribed functional progressive lenses were analysed based on the prescription data and SPSS (Ver. 20.0) was treated using the statistics. Results: Results: The average age of our customers are $27.66{\pm}11.55$ years, average addition power is $+0.73{\pm}0.36D$, customers are using take a prescription of ADD $+0.75{\pm}0.28D$ was the highest 44.33% to 132 people. Near point of convergence of 276 people (92.62%) was mostly less than 10 cm, and near point of accommodation of 134 people (44.97%) was also below 10 cm, within 11~15 cm were 122 people (40.94%). Most of people were within normal range in terms of Near point of convergence and near point of accommodation, near point of accommodation tend to be longer than Near point of convergence. As you can see this result shows most of customers need extra help in their near point of accommodation instead of they are leak at it. FCC (Fused cross cylinder) check Value and ADD (addition power) tests showed that the value of a strong correlation (p=0.00), NPC and NPA were also p=0.001, the correlation of the NPC and ADD is p=0.003, In addition, NPA and ADD also showed a significant correlations (p=0.005). Near Point of Accommodation, negative relative accommodation, and positive relative accommodation are all significantly correlated (p=0.00). The short distance-related variables of the ADD which are NPC, NPA, Age, also appeared to side correlate significantly with each other. Conclusion: Binocular function values of the subjects were highly correlated with each other so precise examination is required. when Age young people are working at short distance, low ADD values was prescribed for solving discomfort. So, in the case of early presbyopia, accommodative insufficiency, or people feel fatigue when they often working at near although their accommodation function is normal, when functional progressive lenses are prescribed, expectation of this should be exactly notified.

Experimental Research on the Power Improvement by Increasing Intake pressure in a 1.4 L Turbocharged CNG Port Injection Spark Ignition Engine (1.4L 급 터보 CNG 엔진에서 흡기압력 상승에 따른 출력 증대 효과에 관한 연구)

  • Lee, Jeong-Woo;Park, Cheol-Woong;Bae, Jong-Won;Kim, Chang-Gi;Lee, Sun-Youp;Kim, Yong-Rae
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.90-96
    • /
    • 2019
  • Natural gas has been regarded as one of major alternative fuels, because of the increment of mining shale gas and supplying PNG(Pipeline Natural Gas) from Russia. Thus, it needs to broaden the usage of natural gas as the increasing its supplement. In this situation, application of natural gas on the transport area is a good suggestion to reduce exhaust emissions such as CO2(carbon dioxides) and soot from vehicles. For this reason, natural gas can be applied to SI(spark ignition) engines due to its anti-knocking and low auto-ignitibility characteristics. Recently, since turbocharged SI engine has been widely used, it needs to apply natural gas on the turbocharged SI engine. However, there is a major challenge for using natural gas on turbocharged SI engine, because it is hard to make natural gas direct injection in the cylinder, while gasoline is possible. As a result, there is a loss of fresh air when natural gas is injected by MPI (multi-point injection) method under the same intake pressure with gasoline-fueled condition. It brings the power reduction. Therefore, in this research, intake pressure was increased by controling the turbocharger system under natural gas-fueled condition to improve power output. The goal of improved power is the same level with that of gasoline-fueled condition under the maximum torque condition of each engine speed. As a result, the maximum power levels, which are the same with those of gasoline-fueled conditions, with improved brake thermal efficiency could be achieved for each engine speed (from 2,000 to 6,000 rpm) by increasing intake pressure 5-27 % compared to those of gasoline-fueled conditions.

Effects of Exhaust Gas Recirculation on Power and Thermal Efficiency of Reactivity Controlled Compression Ignition in Different Load Conditions with a 6-L Engine (6 L급 압축착화 기관에서 천연가스-디젤 반응성 조정 연소 시 부하에 따른 배기 재순환율이 출력 및 열효율에 미치는 영향 분석)

  • Lee, Sunyoup;Lee, Seok-Hwan;Kim, Chang-Gi;Lee, Jeong-Woo
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.1-10
    • /
    • 2020
  • Reactivity controlled compression ignition (RCCI) combustion is one of dual-fuel combustion systems which can be constructed by early diesel injection during the compression stroke to improve premixing between diesel and air. As a result, RCCI combustion promises low nitrogen oxides (NOx) and smoke emissions comparing to those of general dual-fuel combustion. For this combustion system, to meet the intensified emission regulations without emission after-treatment systems, exhaust gas recirculation (EGR) is necessary to reduce combustion temperature with lean premixed mixture condition. However, since EGR is supplied from the front of turbocharger system, intake pressure and the amount of fresh air supplementation are decreased as increasing EGR rate. For this reason, the effect of various EGR rates on the brake power and thermal efficiency of natural gas/diesel RCCI combustion under two different operating conditions in a 6 L compression ignition engine. Varying EGR rate would influence on the combustion characteristic and boosting condition simultaneously. For the 1,200/29 kW and 1,800 rpm/(lower than) 90 kW conditions, NOx and smoke emissions were controlled lower than the emission regulation of 'Tier-4 final' and the maximum in-cylinder pressure was 160 bar for the indurance of engine system. The results showed that under 1,200 rpm/29 kW condition, there were no changes in brake power and thermal efficiency. On the other hand, under 1,800 rpm condition, brake power and thermal efficieny were decreased from 90 to 65 kW and from 37 to 33 % respectively, because of deceasing intake pressure (from 2.3 to 1.8 bar). Therefore, it is better to supply EGR from the rear of compressor, i.e. low pressure EGR (LP-EGR) system, comparing to high pressure EGR (HP-EGR) for the improvement of RCCI power and thermal efficiency.

Effects of Biogas Composition Variations on Engine Performance (바이오가스의 성분 변화가 엔진 성능에 주는 영향)

  • Park, Seung-Hyun;Park, Cheol-Woong;Kim, Young-Min;Lee, Sun-Youp;Kim, Chang-Gi
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.5
    • /
    • pp.25-30
    • /
    • 2011
  • Biogas obtained from the biodegradable organic wastes in an anaerobic digester consists of $CH_4$ and inert gases such as $CO_2$ and $N_2$. Since the composition of biogas varies by anaerobic digester conditions and the origin of wastes, it is necessary to respond to these variations so as to make stable combustion and accomplish high efficiency when it is used as a fuel for power generating SI engines. In this study, efforts have been made to investigate the effect of changes in the calorific values of biogas on the engine performance and exhaust characteristics. The biogas was simulated by supplying of $CH_4$ with $N_2$ dilution of various ratios, and ECM was developed to achieve accurate control of ignition and combustion. The results show that as the $CH_4$ concentration of the biogas decreases, the optimal spark timing is advanced due to the elevated thermal capacity and lowered $O_2$ concentration of the in-cylinder charge. Furthermore, since combustion temperature was reduced by increased inert gas, $NO_x$ emissions decreased, whereas THC emissions increased.