• Title/Summary/Keyword: Cyclooxygenase activity

Search Result 632, Processing Time 0.026 seconds

Chemopreventive Effect of Protein Extract of Asterina pectinifera in HT-29 Human Colon Adenocarcinoma Cells

  • Shon Yun-Hee;Nam Kyung-Soo
    • Archives of Pharmacal Research
    • /
    • v.29 no.3
    • /
    • pp.209-212
    • /
    • 2006
  • We investigated the effect of protein extract of Asterina pectinifera on the activity of 4 enzymes that may playa role in adenocarcinoma of the colon: quinone reductase (QR), glutathione Stransferase (GST), ornithine decarboxylase (ODC), and cyclooxygenase (COX)-2. QR and GST activity increased in HT-29 human colon adenocarcinoma cells increased that had been exposed to 4 concentrations of the protein extract (80, 160, 200, and $240{\mu}g/mL$). Additionally, 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ODC activity decreased significantly in cells exposed to the extract in concentrations of $160{\mu}g/mL$ (p<0.05), $200{\mu}g/mL$ (p<0.005), and $240{\mu}g/mL$ (p<0.005). TPA-induced COX-2 activity also decreased in cells exposed to extract concentrations of 10, 20, 40, and $60{\mu}g/mL$. COX-2 expression was also inhibited in cells exposed to this extract. These results suggest that this protein extract of A pectinifera has chemopreventive activity in HT-29 human colon adenocarcinoma cells, and therefore, may have the potential to function as a chemopreventive agent in human colorectal cancer.

The Constituents Isolated from Peucedanum japonicum Thunb. and their Cyclooxygenase (COX) Inhibitory Activity

  • Zheng, Mingshan;Jin, Wenyi;Son, Kun-Ho;Chang, Hyeun-Wook;Kim, Hyun-Pyo;Bae, Ki-Hwan;Kang, Sam-Sik
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.2
    • /
    • pp.75-79
    • /
    • 2005
  • Five coumarins, psoralen (1), scopoletin (2), isoimperatorin (4), (+)-marmesin (5) and xanthotoxin (6), three chromones, cimifugin (3), hamaudol (7) and sec-O-glucosylhamaudol (10), one sterol, daucosterol (8) and one aliphatic alcohol, galactitol (9) were isolated from the root of Peucedanum japonicum. Their chemical structures were identified by the physicochemical and spectroscopic data by comparing literature values. Among them, compounds 9 and 10 were isolated for the first time from this plant. The anti-inflammatory effects of isolated compounds were examined on cyclooxygenase (COX), compounds 1, 2 and 7 showed inhibitory activity on COX-1 with $IC_{50}$ values of 0.88, 0.27 and 0.30 mM, respectively. In the test for COX-2 activity, only compound 7 showed significant inhibitory activity with the $IC_{50}$ value of 0.57 mM. The other compounds exhibited weak inhibitory or no inhibitory activity.

Inhibitory Effect of Benzofuran Compound on Cyclooxygenase

  • Min, Kyung-Rak;Ahn, Ki-Young;Chung, Eun-Yong;Lee, Yong-Rok;Kim, Yeong-Shik;Kim, Young-Soo
    • Natural Product Sciences
    • /
    • v.10 no.6
    • /
    • pp.315-320
    • /
    • 2004
  • Alpha-viniferin was previously isolated as a cyclooxygenase (COX)-2 inhibitor from Carex humilis (Cyperaceae) and is an oligomeric stilbene compound with benzofuran (BF) moieties in its chemical structure. In the present study, a chemically synthetic BF compound, named as 3,3-dimethyl-2,3,4,6,7,8,9,10,11,12,13,14,15,16,17,18-hexadecahydro-1H-benzo[b] cyclopentadeca[d]furan-1-one, was discovered to inhibit bacterial lipo polysaccharide (LPS)-induced prostaglandin $E_2$ $(PGE_2)$ production in macrophages RAW 264.7. The BF compound exhibited a selectively preferred inhibitory effect on COX-2 activity over COX-1 activity. Furthermore, BF compound inhibited LPS-induced COX-2 expression at transcription level. As a down-regulatory mechanism of COX-2 expression shown by BF compound, suppression of nuclear factor $(NF)-{\kappa}B$ activation has been demonstrated. BF compound inhibited LPS-induced $NF-{\kappa}B$ transcriptional activity and nuclear translocation of $NF-{\kappa}B$ p65, in parallel, but did not affect LPS-induced degradation of inhibitory ${\kappa}B{\alpha}$ protein $(I{\kappa}B{\alpha})$. Taken together, anti-inflammatory effect of BF compound on $PGE_2$ production was ascribed by its down-regulatory action on LPS-induced COX-2 synthesis in addition to inhibitory action on enzyme activity of COX-2.

ET-18-O-$CH_3$ INDUCED APOPTOSIS IN H-RAS TRANSFORMED HUMAN BREAST EPITHELIAL CELLS THROUGH UP-REGULATION OF CYCLOOXYGENASE-2

  • Na, Hye-Kyung;Surh, Young-Joon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.05a
    • /
    • pp.80-80
    • /
    • 2002
  • Cyclooxygenase-2 (COX-2) is an inducible enzyme expressed in response to a variety of cytokines. The presence of oncogenic ras has been associated with sustained induction of COX-2, which confers resistance to apoptosis. Contrary to the above notion, we found that MCF10A-ras cells treated with an anti-tumor agent, ET-18-O-$CH_3$, underwent apoptosis as revealed by proteolytic cleavage of poly(ADP-ribose)polymerase, pro-caspase 3 activity, and TUNEL staining, while the same treatment caused an increased expression of COX-2 as well as the elevated production of prostaglandin E$_2$(PGE$_2$).(omitted)

  • PDF

A Model for the Active Site of Cyclooxygenase (사이클로옥시게나제의 작용부위 모델)

  • Kim, Yang-Bae;Chung, Uoo-Tae;Park, Il-Yeong
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.3
    • /
    • pp.155-168
    • /
    • 1996
  • The active site of cyclooxygenase was modeled by complementary receptor-cavity mapping procedure using 3D structures of the non-steroidal antiinflammatory drugs (NSAIDs). A total of 50 NSAIDs were chosen as data ligands which compete the same site on the enzyme. Partial atomic charges were estimated, and the energetic differences for various conformations were calculated so as to meet the need for a most efficient overlapping of the probably-equivalent functional groups of the ligand molecules. The structure activity relationships of the NSAIDs, if available, were fully considered throughout the modeling. The overall shape of the model obtained is similar to a boot-without-bottom. Most of inner surface of the cavity appeared as hydrophobic; two polar counterparts except the carboxyl-binding position were found. By this model, some clear explanations could be given on the experimental observations which were not satisfiably understood yet.

  • PDF

Effects of Methyl Gallate on Arachidonic Acid Metabolizing Enzymes: Cyclooxygenase-2 and 5-Lipoxygenase in Mouse Bone Marrow-Derived Mast Cells

  • Kim, Se-Jong;Jin, Mei-Hua;Lee, Eun-Kyung;Moon, Tae-Chul;Quan, Zhe-Jiu;Yang, Ju-Hye;Son, Kun-Ho;Kim, Kil-Ung;Son, Jong-Kun;Chang, Hyeun-Wook
    • Archives of Pharmacal Research
    • /
    • v.29 no.10
    • /
    • pp.874-878
    • /
    • 2006
  • Methyl gallate (MG) is a medicinal herbal product that is isolated from Paeonia lactiflora that inhibits cyclooxygenase-2 (COX-2) dependent phases of prostaglandin $D_2\;(PGD_2)$ generation in bone marrow-derived mast cells (BMMC) in a concentration-dependent manner with an $IC_{50}$ values of $17.0\;{\mu}M$. This compound also found inhibited the COX-2-dependent conversion of the exogenous arachidonic acid to $PGD_2$ in a dose-dependent manner with an $IC_{50}$ values of $190\;{\mu}M$, using a COX enzyme assay kit. However, at concentrations up to $80\;{\mu}M$, MG did not inhibit COX-2 protein expression in BMMC, indicating that MG inhibits COX-2 activity directly. Furthermore, MG consistently inhibited the production of leukotriene $C_4\;(LTC_4)$ in a dose dependent manner, with an $IC_{50}$ value of $5.3\;{\mu}M$. These results demonstrate that MG has a dual cyclooxygenase-2/5-lipoxygenase inhibitory activity, which might provide the basis for novel anti-inflammatory drugs.

Anti-Inflammatory Activity of Constituents Isolated from Ulmus davidiana var. japonica

  • Zheng, Ming Shan;Yang, Ju-Hye;Li, Ying;Li, Xian;Chang, Hyeun-Wook;Son, Jong-Keun
    • Biomolecules & Therapeutics
    • /
    • v.18 no.3
    • /
    • pp.321-328
    • /
    • 2010
  • Twenty six compounds (1-26) were isolated from the root barks of Ulmus davidiana var. japonica. The anti-inflammatory activity of the isolated compounds were evaluated agai nst the generation of inflammatory chemical mediators in bone marrow-derived mast cells. Among them, compounds 10, 11, 13, 15 and 19 inhibited not only cyclooxygenase-2 dependent prostaglandin $D_2$ generation but also 5-lipoxygenase dependent leukotrien $C_4$ generation in a concentration-dependent manner. In addition, compounds 11, 12, 13, 15 and 19 also inhibited $\beta$-hexosaminidase release, a marker of mast cell degranulation reaction, from bone marrow-derived mast cell. These results suggest that the anti-inflammatory activity of U. davidiana might in part occur by both the inhibition of eicosanoid generations and the degranulation reaction of mast cells.

Chemopreventive effects of polysaccharides extract from Asterina pectinifera on HT-29 human colon adenocarcinoma cells

  • Nam, Kyung-Soo;Shon, Yun-Hee
    • BMB Reports
    • /
    • v.42 no.5
    • /
    • pp.277-280
    • /
    • 2009
  • We examined the effects of polysaccharides extracted from Asterina pectinifera on the activities of quinone reductase (QR), glutathione S-transferase (GST), ornithine decarboxylase (ODC), cyclooxygenase (COX)-2 and glutathione (GSH) levels in HT-29 human colon adenocarcinoma cells. We found that the polysaccharides extract induced QR activity in a dose-dependent manner over a concentration range of $20-60\;{\mu}g/ml$ and increased GST activity as much as 1.4-fold over controls. GSH levels were increased 1.3- and 1.5-fold with the extract at 40 and $60\;{\mu}g/ml$, respectively. The activity and protein expression of ODC in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced colon cancer cells was inhibited by the extract. The polysaccharides suppressed TPA-induced prostaglandin (PG) production. These data indicate that polysaccharides from A. pectinifera increase phase II detoxification enzyme activity and inhibit ODC and COX-2 activities in HT-29 human colon adenocarcinoma cells. Consequently, this effect may contribute to the protective effect of polysaccharides from A. pectinifera against colon cancer.

Pulsatilla koreana Ameliorates Ddextran Sulfate Sodium-induced Ccolitis in Mice

  • Kim, Su-Jin
    • Biomedical Science Letters
    • /
    • v.21 no.2
    • /
    • pp.115-121
    • /
    • 2015
  • Ulcerative colitis (UC) is an inflammatory bowel disease, which is a chronic gastrointestinal disorder. Pulsatilla koreana (P. koreana) is a perennial plant that grows around Korea and it has various pharmacological effects such as anti-cancer and anti-inflammatory activity. However, the regulatory effects of P. koreana in intestinal inflammation are not yet understood. This study attempted to determine the effect of P. koreana in dextran sulfate sodium (DSS)-induced colitis in mice. The colitis mice were induced by drinking water containing 5% DSS for 7 days. The results showed that mice treated with DSS showed remarkable clinical signs, including weight loss, and reduced colon length. Administration of P. koreana attenuated DSS-induced the weight loss, colon shortening and Disease activity index in mice. Additionally, P. koreana inhibited the cyclooxygenase-2 and prostaglandin $E_2$ levels in DSS-treated colon tissues. These results provide experimental evidence that P. koreana might be a useful therapeutic medicine for patients with UC.

Cyclooxgenase Inhibitory Components from Portulaca oleracea

  • Kim, Jeong-Ah;Yang, Seo-Young;Kang, Sang-Jin;Kim, Young-Ho
    • Natural Product Sciences
    • /
    • v.18 no.1
    • /
    • pp.22-25
    • /
    • 2012
  • Five triterpenoids, epifriedelanol (1), friedelin (2), lupeol (3), ${\beta}$-sitosterol (4), daucosterol (5), and one phenyl propanoids ester, trans-docosanoyl ferulate (6) were isolated from the whole parts of Portulaca oleracea. They were determined using a combination of spectroscopic analyses ($^1H-$, $^{13}C$-NMR, and MS data) and evaluated for their cyclooxygenase inhibitory activity. Compound 6 exhibited inhibitory effect with $IC_{50}$ values of $40.2{\mu}M$ and 1.6 mM on COX-1 and COX-2 activities, respectively.