• Title/Summary/Keyword: Cyclooxygenase I

Search Result 680, Processing Time 0.025 seconds

Innate Immune-Enhancing Effect of Pinus densiflora Pollen Extract via NF-κB Pathway Activation

  • Sehyeon Jang;San Kim;Se Jeong Kim;Jun Young Kim;Da Hye Gu;Bo Ram So;Jung A Ryu;Jeong Min Park;Sung Ran Yoon;Sung Keun Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.644-653
    • /
    • 2024
  • Considering the emergence of various infectious diseases, including the coronavirus disease 2019 (COVID-19), people's attention has shifted towards immune health. Consequently, immune-enhancing functional foods have been increasingly consumed. Hence, developing new immune-enhancing functional food products is needed. Pinus densiflora pollen can be collected from the male red pine tree, which is commonly found in Korea. P. densiflora pollen extract (PDE), obtained by water extraction, contained polyphenols (216.29 ± 0.22 mg GAE/100 g) and flavonoids (35.14 ± 0.04 mg CE/100 g). PDE significantly increased the production of nitric oxide (NO) and reactive oxygen species (ROS) but, did not exhibit cytotoxicity in RAW 264.7 cells. Western blot results indicated that PDE induced the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2. PDE also significantly increased the mRNA and protein levels of cytokines and the phosphorylation of IKKα/β and p65, as well as the activation and degradation of IκBα. Additionally, western blot analysis of cytosolic and nuclear fractions and immunofluorescence assay confirmed that the translocation of p65 to the nucleus after PDE treatment. These results confirmed that PDE increases the production of cytokines, NO, and ROS by activating NF-κB. Therefore, PDE is a promising nutraceutical candidate for immune-enhancing functional foods.

Effect of Steviol β-Glucopyranosyl Ester on The Production of Nitric Oxide and Inflammatory Cytokines in RAW 264.7 Cells (Steviol β-Glucopyranosyl Ester가 RAW 264.7 세포의 산화질소 및 염증성 사이토카인 생성에 미치는 영향)

  • Jung, Heehoon;Cho, Uk Min;Hwang, Hyung Seo;Cho, Kun;Lee, Sang Rin;Kim, Moo Sung
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.3
    • /
    • pp.239-247
    • /
    • 2018
  • Chronic inflammation is known to have effects on various diseases such as gout, cancer, dementia, atopic disease, and obesity. In addition, since some signal cascades involved in the development of inflammation are known to affect the damage and aging of the skin tissue, studies are being conducted actively to control the inflammation mechanism. In order to mitigate or prevent inflammatory response, a number of researches have been made to develop anti-inflammatory materials from some plants. In particular, Stevia rebaudiana produces steviol glycosides (SG), a natural sweetener with a distinctive flavor. Studies on some of SG have been shown to have anti-inflammatory activity. Researchers of this study expected that more SG also possess anti-inflammatory activity, besides stevioside, rebaudioside A, and steviol. In order to confirm this possibility, the researchers screened inhibition activity of various steviol glucosides for NO production in RAW 264.7 cell lines. As a result, steviol ${\beta}-glucopyranosyl$ ester (SGE) showed the highest inhibitory activity among steviol derivatives treated at the same molar concentration. In addition, we found that mRNA expression level of $interleukin-1{\alpha}$ ($IL-1{\alpha}$), $interleukin-1{\beta}$ ($IL-1{\beta}$), cyclooxygenase-2 (COX-2), nuclear factor kappa-light chain-enhancer of activated B cells ($NF-{\kappa}B$) and inducible nitric oxide synthase (iNOS) was also decreased in a dose-dependent manner. These results show that SGE inhibits anti-inflammatory activity and NO production in mouse macrophage RAW 264.7 cells. It was confirmed that SGE has potential to be applied as an anti-inflammatory material.

Inhibitory Effects of Asparagus cochinchinensis in LPS-Stimulated BV-2 Microglial Cells through Regulation of Neuroinflammatory Mediators, the MAP Kinase Pathway, and the Cell Cycle (Lipopolysaccharide로 자극된 BV-2 미세교세포에서 신경염증 매개체, MAP kinase경로, 세포주기의 조절에 의한 천문동(Asparagus cochinchinensis)의 저해효과)

  • Lee, Hyun Ah;Kim, Ji Eun;Choi, Jun Young;Sung, Ji Eun;Youn, Woo Bin;Son, Hong Joo;Lee, Hee Seob;Kang, Hyun-Gu;Hwang, Dae Youn
    • Journal of Life Science
    • /
    • v.30 no.4
    • /
    • pp.331-342
    • /
    • 2020
  • The suppression of neuroinflammatory responses in microglial cells can be considered a key target for improving the progression of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Asparagus cochinchinensis has traditionally been used as a medicine to treat fever, cough, kidney disease, breast cancer, inflammatory diseases, and brain diseases. In this study, we investigated the neuroprotective mechanism of an aqueous extract from A. cochinchinensis root (AEAC), particularly its anti-inflammatory effects on lipopolysaccharide (LPS)-activated BV-2 microglial cells. BV-2 cells were treated with four different concentrations of AEAC. No significant toxicity was detected in BV-2 cells treated with AEAC. Nitric oxide (NO), cyclooxygenase-2 (COX-2) mRNA, and inducible nitric oxide synthase (iNOS) mRNA levels were 21% lower in the AEAC+LPS group than in the Vehicle+LPS group. Lower proinflammatory (TNF-α and IL-1β) and anti-inflammatory cytokine (IL-6 and IL-10) levels were also detected in the AEAC+LPS group than in the Vehicle+LPS group, albeit at varying rates. Moreover, the phosphorylation of mitogen-activated protein kinase (MAPK) members after LPS treatment was significantly recovered in the AEAC-pretreated group compared to the Vehicle+LPS group, enhancement of the phosphorylation of mitogen-activated protein kinase (MAPK) members after LPS treatment was significantly recovered in the AEAC-pretreated group, while cell cycle arrest at the G2/M phase caused by LPS treatment was less severe in the AEAC+LPS group. The increase in reactive oxygen species (ROS) generation induced by LPS treatment was also lower in the AEAC-pretreated group than in the Vehicle+LPS group. This is the first study to show that AEAC exerts anti-neuroinflammatory activity against LPS stimulation by regulating the MAPK signaling pathway, the cell cycle, and ROS production.

Inhibitory Effect of Protaetiamycine 9 Derived from Protaetia brevitarsis seulensis Larvae on LPS-mediated Inflammation in RAW264.7 Cells (LPS로 자극한 RAW264.7 대식세포에서 흰점박이꽃무지 유충 유래 Protaetiamycine 9의 항염증 효과)

  • Choi, Ra-Yeong;Seo, Minchul;Lee, Joon Ha;Kim, In-Woo;Kim, Mi-Ae;Hwang, Jae-Sam
    • Journal of Life Science
    • /
    • v.31 no.11
    • /
    • pp.987-994
    • /
    • 2021
  • Our previous studies have reported that antimicrobial peptides (AMPs) derived from the larvae of white-spotted flower chafer (Protaetia brevitarsis seulensis) exert anti-inflammatory and neuroprotective activities. This study explored the anti-inflammatory effects of protaetiamycine 9 (CVLKKAYFLTNLKLRG-NH2), a novel AMP, derived from P. b. seulensis against lipopolysaccharide (LPS)-mediated inflammatory response in RAW264.7 macrophage cells. Protaetiamycine 9 (25, 50, 75, and 100 ㎍/ml) did not cause cytotoxic effects against RAW264.7 cells. The RAW264.7 cells were pre-treated with various concentrations of protaetiamycine 9 (25-100 ㎍/ml) for 1 hr and then exposed to LPS (100 ng/ml) for 24 hr. Protaetiamycine 9 treatments decreased the LPS-induced secretion of inflammatory mediators, such as nitric oxide (NO), in a dose-dependent manner. Protaetiamycine 9 (25-100 ㎍/ml) effectively downregulated the LPS-induced increase in mRNA and the protein expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2), which are involved in the production of inflammatory mediators. Protaetiamycine 9 also suppressed the production and gene expression of pro-inflammatory cytokines, including interleukin (IL)-6 and IL-1β, compared to the presence of LPS alone. Furthermore, protaetiamycine 9 inhibited the degradation of inhibitory kappa B alpha (IκB-α) and the phosphorylation of mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38. In conclusion, these results suggest that protaetiamycine 9 exhibits LPS-mediated inflammatory responses by blocking IκB-α degradation and MAPK phosphorylation.

Anti-oxidative and Anti-inflammatory Activities of Fermented Turmeric (Curcuma longa L.) by Rhizopus oryzae (Rhizopus oryzae으로 발효한 울금의 항산화 및 항염효과)

  • Kim, Eun-Ju;Song, Bit-Na;Jeong, Da-Som;Kim, So-Young;Cho, Yong-Sik;Park, Shin-Young
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1315-1323
    • /
    • 2017
  • Turmeric is a rhizomatous herbaceous perennial plant (Curcuma longa (CL)) of the ginger family, Zingiberaceae. A yellow-pigmented fraction isolated from the rhizomes of CL contains curcuminoids belonging to the dicinnamoyl methane group. Curcumin is an important active ingredient responsible for the biological activity of CL. However, CL is not usually used as a food source due to its bitter taste. The present study was designed to determine the effect of the CL fermented by Rhizopus oryzae (FCL) on pro-inflammatory factors such as nuclear factor ${\kappa}B$ ($NF-{\kappa}B$), tumor necrosis factor alpha ($TNF-{\alpha}$), interleukin-6 (IL-6), nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-induced RAW 264.7 cell line. The cell viability was determined by MTT assay. To evaluate the anti-inflammatory effect of FCL 80% EtOH extracts, IL-6 and $TNF-{\alpha}$ were measured by ELISA kit. Also, the amount of $NO/PGE_2/NF-{\kappa}B$ was measured using the $NO/PGE_2/NF-{\kappa}B$ detection kit and the iNOS/COX-2 expression was measured by Western blotting. The results showed that the FCL reduced NO, $PGE_2$, iNOS, COX-2, $NF-{\kappa}B$, IL-6 and $TNF-{\alpha}$ production without cytotoxicity. These results suggest that FCL extracts may be a developed the functional food related to anti-inflammation due to the significant effects on inflammatory factors.

Anti-inflammatory effect of Polygonum multiflorum extraction in activated RAW 264.7 cells with lipopolysaccharide (Lipopolysaccharide로 활성화된 RAW 264.7 세포에서 적하수오(Polygonum multiflorum) 추출물의 항염증 효과 검증)

  • Lee, Eunsu;Kim, Hyeongjeong;Yu, Jae-Myo;Cho, Yong-Hun;Kim, Dong-In;Shin, Yuhyeon;Cho, Yeongje;Kwon, O-Jun;An, Bongjeon
    • Food Science and Preservation
    • /
    • v.21 no.5
    • /
    • pp.740-746
    • /
    • 2014
  • The anti-inflammatory effects of Polygonum multiflorum water extracts (PMWs) and Polygonum multiflorum 70 % ethanol extracts(PMEs) were investigated using lipopolysaccharide-induce by inflammatory response. The inhibitory effects of PMWs and PMEs on the production of nitric oxide (NO) and pro - inflammatory cytokines in LPS - activated Raw 264.7 cells were investigated. The effects were examined after reducing production of Nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), interleukin-6 (IL-6), tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-$1{\beta}$ (IL-$1{\beta}$), nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein levels. RAW 264.7 cells were cultured with LPS ($1{\mu}g/mL$) in the presence or absence of PMWs and PMEs for 24 h to determine their NO, iNOS, COX-2 levels. During the entire experimental period 10, 25, 50 and $100{\mu}g/mL$ of PMWs and PMEs showed no cytotoxicity. At these concentrations, PMWs and PMEs concentration dependently reduced the production of nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), interleukin-6 (IL-6), tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interleukin-$1{\beta}$ (IL-$1{\beta}$). PMWs and PMEs were inhibited the activittion of iNOS, COX-2 by 89%, 54%, 91% and 57% respectively, at $100{\mu}g/mL$. These results indicate that PMWs and PMEs significantly reduces the effect of oxidative and inflammatory cytokines.

Anti-inflammatory Effects of Rumohra adiantiformis Extracts Fermented with Bovista plumbea Mycelium in LPS-stimulated RAW 264.7 Cells (LPS로 자극된 RAW 264.7 세포에서 찹쌀떡버섯 균사체로 생물전환된 루모라고사리 추출물의 항염증 효과)

  • Ji-Hye Hong;Eun-Seo Jang;Myung-Chul Gil;Gye Won Lee;Young Ho Cho
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.471-480
    • /
    • 2023
  • This study was designed to evaluate the anti-inflammatory effects of Rumohra adiantiformis extracts fermented with Bovista plumbea mycelium (B-RAE) in LPS-stimulated RAW 264.7 cells. The total polyphenol and total flavonoid content of B-RAE were 379.26±7.77 mg/g and 50.85±3.08 mg/g, respectively. The results of measuring the antioxidant activity of B-RAE showed that it scavenges 2, 2-diphenyl-1-picrylhydrazyl (DPPH), 2, 2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and superoxide anion radical in a dose-dependent manner. B-RAE inhibited nitric oxide (NO) production in a dose-dependent manner without affecting cell viability. The gene expression of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-lβ (IL-1β), and IL-6 was measured using real time quantitative reverse transcription PCR (qRT-PCR). We found that, compared to the LPS-treated group, B-RAE significantly reduced the mRNA levels of the pro-inflammatory cytokines in a concentration-dependent manner. The expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), the phosphorylation of transcription factors such as nuclear factor-κB (NF-κB), and the mitogen-activated protein kinase (MAPK) signaling pathway proteins were assessed using Western blot analysis. We found that B-RAE significantly suppressed the expression of iNOS and COX-2, but their expression was increased by LPS treatment. In addition, the phosphorylation of NF-κB and IκB, which was increased by LPS treatment, was reduced with B-RAE treatment. The effect of B-RAE on the phosphorylation of the MAPK signaling pathway proteins was measured, and the phosphorylation of extracellular signal-regulated kinase (ERK) and the p38 MAPK proteins decreased in a dose-dependent manner, while the phosphorylation of c-Jun N-terminal kinase (JNK) increased. These anti-inflammatory effects of B-RAE may thus have been achieved through the high antioxidant activity, the inhibition of NO production through the suppression of iNOS and COX-2 expression, the inhibition of the NF-κB pathway, and the suppression of pro-inflammatory cytokine expression.

Inhibition of LPS-induced Inflammatory Biomarkers by Fraction of Citrus hassaku pericarp through Suppression of NF-${\kappa}B$ Activation in RAW264.7 Cells (재래감귤 팔삭의 과피 추출물이 LPS로 활성화 된 RAW264.7 대식세포에서 염증매개물질 억제에 미치는 효과)

  • Kim, Chul-Won;Kim, Sung-Moo;Jeong, Seung-Weon;K., So-Mi Cho;Ahn, Kwang-Seok
    • Journal of Korean Traditional Oncology
    • /
    • v.16 no.2
    • /
    • pp.25-34
    • /
    • 2011
  • Objectives : Citrus is the fruit that is readily available around us. Therefore, we investigated the anti-inflammatory effects of fraction isolated from the Citrus hassaku pericarp in RAW264.7 macrophage cells. Methods : The effects of fraction from Citrus hassaku pericarp on cell viability on RAW264.7 cells were measured by the MTT assay. The mRNA levels of iNOS and COX-2, its protein level by fraction of Citrus hassaku pericarp treatment in RAW264.7 macrophage cells were investigated by RT-PCR and immunoblots. Nitrite accumulation in the culture was measured colorimetrically by the Griess reaction using a Griess reagent. The amount of IL-6 and TNF-${\alpha}$ production was determined using an enzyme-linked immunosorbent assay (ELISA) kit. Results : The results indicated that the fraction of Citrus hassaku pericarp concentration highly suppressed lipopolysaccharide (LPS)-induced nitric oxide (NO) and IL-6 productions without a cytotoxic effect on RAW264.7 cells. fraction of Citrus hassaku pericarp inhibited the expressions of LPS-induced iNOS and COX-2 protein and their mRNA in a dose-dependent manner. Particularly, fraction of Citrus hassaku pericarp suppressed the level of nuclear factor-${\kappa}B$ (NF-${\kappa}B$) activity, which was linked with the suppression of LPS-induced phosphorylation of p65 at serine 276 and p65 translocation into nuclei, but not MAPK signaling. In addition, treatment with fraction of Citrus hassaku pericarp inhibited the production of IL-6 and TNF-${\alpha}$ in LPS-stimulated RAW264.7 cells. Conclusion : Our results indicate that fraction of Citrus hassaku pericarp potentially inhibits the biomarkers related to inflammation through the blocking of NF-${\kappa}B$ p65 activation, and it may be a potential therapeutic candidate for the treatment of inflammatory diseases.

Anticancer Effects of Typhae Pollen on HepG2 Human Hepatocellular Carcinoma

  • Joo, Jeong-Hyun;Kim, Kyung-Soon;Choi, Hong-Sik;Kim, Seung-Mo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.32 no.4
    • /
    • pp.261-270
    • /
    • 2018
  • The aim of this study was to evaluate the antitumor activities of Typhae pollen (TP) by confirming in vitro cytotoxicity and in vivo anti-tumor and immune-modulatory effect with anti-cachexia effect. The MTT assay is used in HepG2 cell to detect potential cytotoxic activities of aqueous extract of Typhae pollen (TPe). After HepG2 tumor cell implantation, eight mice per groups were assigned to six groups. Three different dosages of TPe (500, 250 and 125 mg/kg) were orally administered in the amount of $10m{\ell}/kg$ and sorafenib also administered 20mg/kg, every day for 35 days from 28 days after the tumor cell implantation. We observed the changes on body weights, tumor volume and weights, lymphatic organ, serum interferon $(IFN)-{\gamma}$ levels, splenocytes and peritoneal NK cell activity, splenic tumor necrosis factor $(TNF)-{\alpha}$, interleukin $(IL)-1{\beta}$, IL-10 contents. Periovarian fat weights, serum IL-6 levels, thicknesses of deposited periovarian adipose tissue and mean diameters were also detected to monitor the tumor-related anticachexic effects. In tumor masses, the immunoreactivities of cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase (cleaved PARP) - apoptotic marks, cyclooxygenase-2 (COX-2), inducible nitric oxide synthases (iNOS) and tumor necrosis factor $(TNF)-{\alpha}$ were additionally observed by immunohistochemistry. The results were compared with sorafenib. Decreases of COX-2 were demonstrated in sorafenib and TPe treated mice and also increases of iNOS in tumor masses were observed in TPe, not in sorafenib. TPe increased periovarian fat pad weights compared with tumor-bearing controls and sorafenib treated mice. TPe showed increases of splenic $TNF-{\alpha}$, IL-10 and $IL-1{\beta}$, serum $IFN-{\gamma}$ and NK cell activities corresponding to increases of spleen weights, lymph node weights and non-atrophic changes of lymph nodes. Our results show oral treatment of TPe 500, 250 and 125 mg/kg has potent in vitro and in vivo antitumor activities through modest cytotoxic effects, immunomodulatory effects and apoptotic activities in HepG2 tumor cells. In addition, TPe can prevent cancer related cachexia.

Research of the Anti-inflammatory Effects of Forsythiae Fructus and Lonicerae Flos Ethanol Extracts (연교(連翹)와 금은화(金銀花) 에탄올 추출물의 항염증 효능 연구)

  • Ryu, Hyo-Kyung;Jung, Min-Jae;Choi, Yu-Jin;Yang, Seung-Jeong;Cho, Seong-Hee
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.33 no.3
    • /
    • pp.40-59
    • /
    • 2020
  • Objectives: The purpose of this study was to investigate the anti-inflammatory effects of ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos in vitro, which has been frequently used in inflammatory diseases. Methods: In this experiment, the anti-inflammatory effects of ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos were evaluated by checking the following substances of LPS-activated Raw264.7 cell: Prostaglandin E2 (PGE2), Nitric oxide (NO), Cyclooxygenase-2 (COX-2), inducible Nitric oxide synthase (iNOS), Interlukine-1β (IL-1β), Interlukine-6 (IL-6), Tumor necrosis factor-α (TNF-α), mitogen-activated protein kinase (MAPK), Inhibitor of kappa B-α (IκBα), Nuclear factor kappa B (NF-κB). And additionally measured reactive oxygen species (ROS) and free radicals to check the antioxidant effect of ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos which affect inflammatory responses. Results: As a result of measuring anti-inflammatory efficacy, PGE2, NO, IL-1β, IL-6, TNF-α production amounts were reduced in the ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos groups compared with the control group, and decreased the amount of COX-2 mRNA, iNOS mRNA gene expression. Expression of MAPK (ERK, JNK, p38) pathway was decreased. Expression of IκBα was increased and NF-κB was decreased. It is demonstrated that ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos, by reducing NF-κB, regulate the expression of the inflammatory genes and reduce the inflammatory mediators. Ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos also decreased ROS production and free radicals, which shown to have antioxidant efficacy and influence anti-inflammatory effects. Conclusions: These data suggest that ethanol extracts from Forsythia viridissima Lindley's fructus and Lonicera japonica Thunberg's flos can be used to treat various inflammatory diseases.