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NF-kB Activation in RAW264.7 Cells
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Objectives : Citrus is the fruit that is readily available around us. Therefore, we investigated the
anti-inflammatory effects of fraction isolated from the Citrus hassaku pericarp in RAW264.7
macrophage cells.

Methods : The effects of fraction from Citrus hassaku pericarp on cell viability on RAW264.7
cells were measured by the MTT assay. The mRNA levels of iNOS and COX-2, its protein
level by fraction of Citrus hassaku pericarp treatment in RAW264.7 macrophage cells were
investigated by RT-PCR and immunoblots. Nitrite accumulation in the culture was measured
colorimetrically by the Griess reaction using a Griess reagent. The amount of IL-6 and TNF-a
production was determined using an enzyme-linked immunosorbent assay (ELISA) kit.

Results : The results indicated that the fraction of Citrus hassaku pericarp concentration highly
suppressed lipopolysaccharide (LPS)-induced nitric oxide (NO) and IL-6 productions without a
cytotoxic effect on RAW264.7 cells. fraction of Citrus hassaku pericarp inhibited the expressions
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of LPS-induced iNOS and COX-2 protein and their mRNA in a dose-dependent manner.
Particularly, fraction of Citrus hassaku pericarp suppressed the level of nuclear factor-kB (NF-k

B) activity, which was linked with the suppression of LPS-induced phosphorylation of p65 at

serine 276 and p65 translocation into nuclei,
with fraction of Citrus hassaku pericarp inhibited the production of

LPS-stimulated RAW264.7 cells.
Conclusion :

but not MAPK signaling. In addition, treatment

IL-6 and TNF-a in

Our results indicate that fraction of Citrus hassaku pericarp potentially inhibits the

biomarkers related to inflammation through the blocking of NF-kB p65 activation, and it may be

a potential therapeutic candidate for the treatment of inflammatory diseases.

Key Words: fraction of Citrus hassaku pericarp; inflammation; NF-xB; nitric oxide; cyclooxygenase-2.
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Fig. 1. Effects of fraction from Citrus hassaku
pericarp on the cell viability in RAW
264.7 macrophages.

The cells were treated with fraction from Citrus hassaku pericarp
(0-5-10-20-40 pg/ml) for 24 h and cell viability was determined
by MTT assay. Results of independent experiments were averaged
and are shown as percentage cell viability compared with the
viability of untreated control cells. All data are presented as

means + S.D. of at least three experiment.
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Fig. 2. Effects of fraction from Cizrus hassaku
pericarp on the  LPS induced nitric
oxide (NO) in RAW 264.7
macrophages.

The nitrite production was measured by the Griess reaction assay
method as described in the methods section. Cells were pretreated
with different concentrations of fraction from Cirus hassaku
pericarp for 2 h and stimulated with LPS (1 pg/ml) for 22 h.
The values obtained were compared with those of standard
concentrations of sodium nitrite dissolved in Dulbecco's modified
Eagle's minimal essential medium (DMEM), and the concentrations
of nitrite in a conditioned media of sample treated cells were
calculated. Data were obtained from three independent experiments
and were expressed as means * SD. *#¥P < (.001 indicates
significant  differences from the LPS treated group, ###P <
0.001 indicates significant differences from the unstimulated control

group.
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Fig. 3. Inhibition of the fraction from Gitrus
hassaku  pericarp  on  LPS induced
iINOS, COX-2 gene products in RAW
264.7 macrophages.

RAW264.7 cells were pretreated with different concentrations of
the fraction from Citrus hassaku pericarp for 2 h and stimulated
with LPS (1 ug/ml) for 22 h. Equal amounts of total proteins
(25 pg/lane) were subjected to 8% (for iNOS) and 10% (for
COX-2) SDS-PAGE, and the expressions of iNOS and COX-2
proteins were detected by Western blotting using specific anti
iNOS and anti COX-2 antibodies. [-actin was used as a
loading control.
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Fig. 4. Inhibition of iNOS and COX-2 mRNA
by fraction from
LPS-stimulated

expressions Citrus

hassaku  pericarp  in
RAW264.7 cells.

RAW  264.7 cells  were
concentrations of fraction from Girus hassaku pericarp for 2 h
before being incubated with LPS (1 pg/ml) for 22h. Total RNA
was isolated, and iNOS and COX-2 mRNA expressions were
examined by RT-PCR analysis. PCR of glyceraldehydes-3-
phosphatedehydrogenase, GAPDH, was performed to control for a

pretreated  with  the indicated

similar initial cDNA content of the sample.
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Fig. 5. Inhibition of the fraction from Girus

induced IL-6
production in RAW 264.7 macrophages.

hassaku pericarp on LPS

Cells were pretreated with different concentrations of fraction from
Gitrus hassaku pericarp for 2 h and stimulated with LPS (1 yg/ml)
for 22 h. The amount of IL-6 release was determined by an IL-6
antibody coated enzyme linked immunosorbent assay (ELISA)
kit, as described in Materials and Methods. Data were obtained
from three independent experiments and were expressed as means
£ SD. *P < 0.05, **P < 0.01, and ***P < 0.001 indicate
significant  differences from the LPS treated group, ###P <
0.001 indicates significant ~differences from the unstimulated

control group.
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Fig. 6.

Cells were pretreated with different concentrations of fraction from
Citrus hassaku pericarp for 2 h and stimulated with LPS (1
ug/ml) for 22 h. The amount of TNF-a release was determined
by an TNF-a antibody coated enzyme linked immunosorbent
assay (ELISA) kit, as described in Materials and Methods. Data
were obtained from three independent experiments and were
expressed as means *+ SD. *P < 0.05, **P < 0.01, and ***P
< 0.001 indicate significant differences from the LPS treated
group, ###P < 0.001 indicates significant differences from the

unstimulated control group.



RMefzt2 Eate| nlm| FEE0| LPSE EH5HEl RAW264.7 CHAIMZOIM ATOIHESZE! X0 D|X[= st | 31

of Aol gk 22 o %—%%91 3

2} 3]
-40 pg/ml) g
LPS (1 pg/mhE 2247k x%z‘s}aiu}. TNF-09]
FEe AEE w3t AA H]AE ELISA assay
of s stk Fig. 6.5 B3t $29
Ade A} B3 FZE0] TNF-a9] AAddl of
& = JEHoFE FAH A vES 7K

iy £

o
f
38
=

~N

AL Tl ===0] QJst LPSE #
=l NFxB2| &t oAx| o} &fol
| F88 HARIAR] NFxBE @3
o] 9loIA] iNOSS} COX-2& ZAM3to M o
H

S
=
Ao ME NF-kBY Subunitdl p65¢) <14ks}
Aeg Wrlstet. 1 A% Fig. 7.9 depd
7“31 LPSof| 9Jgt p65<] RIitsl= 154
A He Z2F #y FEES A
7‘41‘4& A ETAME o] p65e] QI4ksrE oA
S Btk webx F2F 39 FEEL LPsd
HE5E NF-kBY 4L AdA|sly Agdoz
iINOS9} COX-2& W3S AAel= Aoz Fok
ok

LPS LPS/E Al Tt
0 5153060 0 5 15 30 60 Time (min)

| e ——— - —

|< phospho65 (Ser276)
S e e = e | < Lamin B

Fig. 7.
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activity by fraction from Citrus hassaku

Suppression of LPS

pericarp in RAW 264.7 macrophages.

Cells were pretreated with 40 pg/ml of fraction from Gitrus
hassaku pericarp for 2 h and stimulated with LPS (1 yg/ml) for
the indicated times; nuclear extracts were prepared, resolved by
SDS PAGE, and electrotransferred to a nitrocellulose membrane,
after which Western blot analyses using phospho-specific anti-p65
(ser276)  antibody was performed. Lamin B protein was used as
a loading control. The results shown are representative of three

independent experiments.

FAF Dfi| =20 2§t LPSE

=] p38, ERK1/2, JNKQ| QlAls} HJ%

oixlS Ho}

T OE AFAA FhefulobAlYl  MAPKs
(p38, ERK, JNK)of| gt Qliksl H=r} oA
A 891 sk o] A# Fig. 8.914 Rl
& %ol 24 Fy] FEEE Lpso] o
FEse omd MAPKs (p38, ERK, JNK)¢]
AsE AAlHA] des &l & 4 ATk
Qo] Az = 7y ggwl iﬂrb
MAPKs (p38, ERK, JNK)¢] ¢lAts} A&

A oju= Ao ofue} NF-xBo| &/d9% 1
£ 53 doldte RS o g ERIS)
T

0]
mtl

LPS LPS/EAtat|
0 5153060 0 5 15 30 60 Time (min)
| <« phospho-p38 (Thr180/Tyr182)

| -—----——-—|1p38

LPS LPS/ZAtatg]

0 515 30 60 0 5 15 30 60 Time (min)
— —_— -
|=8s8==88=

———————— |4 ERK

| <« phospho-ERK (Thr202/Tyr204)

LPs LPS/ZrALT}T|
0 5153060 0 5 1530 60 Time (min)
| -4 § f==4 § | 5 |< phospho~JNK (Thr183/Tyr185)

Fig. 8. Effects of fraction from Citrus hassaku

pericarp on LPS induced activation of

p38, ERK, and JNK.

Cells were pretreated with 40 pg/ml fraction from Cirus hassaku
pericarp for 2 h and stimulated with LPS (1 pug/ml) for the
indicated times; whole cell extracts were prepared, resolved by
SDS PAGE, and electrotransferred to a nitrocellulose membrane,
after which Western blot analyses using phospho-specific anti-p38,
anti-ERK,  and anti-JNK
antibodies were performed. The same membranes were reblotted
with anti-p38, and ERK, and anti-JNK antibodies. The results
shown are representative of three independent experiments.
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