• Title/Summary/Keyword: Cyclone Model

Search Result 128, Processing Time 0.023 seconds

Flow Characteristics and Residence Time of Activated Carbon in the Cyclone for Optimized Design of an Adsorption/Catalysis Reactor (흡착/촉매 공정개선을 위한 사이클론 내 유동특성 및 활성탄 체류시간 산정)

  • Choi, Choeng-Ryul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.5
    • /
    • pp.416-424
    • /
    • 2007
  • In adsorption/catalytic process, numerical analysis has been performed to identify the flow characteristics of flue gas in the cyclone and to estimate the residence time of activated carbon using Computational Fluid Dynamics (CFD) technique. To consider flue gas and activated carbon particles simultaneously, Euler-Lagrangian model was employed so that residence time could be obtained from the numerical analysis directly. The numerical analysis has been performed with different three particle sizes and compared each flow characteristics with particle’ size. Fundamental flow patterns of flue gas and activated carbon particles, pressure distribution, residence time of flue gas, and activated carbon particles and distribution of activated carbon have been obtained from the numerical analysis.

Productivity Analysis of the Site Installation Stage of Laminated Modular Multi-Family Housing (적층식 모듈러 공동주택 현장설치 단계의 생산성 분석)

  • Park, Moon-Sun;Kim, Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.5
    • /
    • pp.519-527
    • /
    • 2019
  • This study was conducted to present useful information on the utilization and productivity analysis of laminated modular multi-family housing. To this end, the process of site installation was investigated and analyzed through a prior study, and the monitoring survey was conducted through the site installation case of an stacked multi-family housing. Based on the above, the results of productivity analysis using the web-cyclone technique were also presented. However, the site installation process has limitations on generalisation because the process is not the same for each construction company, and also limits that require verification through application in the actual site of the web-cyclone model presented in this study.

Evaluation of the Numerical Models' Typhoon Track Predictability Based on the Moving Speed and Direction (이동속도와 방향을 고려한 수치모델의 태풍진로 예측성 평가)

  • Shin, Hyeonjin;Lee, WooJeong;Kang, KiRyong;Byun, Kun-Young;Yun, Won-Tae
    • Atmosphere
    • /
    • v.24 no.4
    • /
    • pp.503-514
    • /
    • 2014
  • Evaluation of predictability of numerical models for tropical cyclone track was performed using along-and cross-track component. The along-and cross-track bias were useful indicators that show the numerical models predictability associated with cause of errors. Since forecast errors, standard deviation and consistency index of along-track component were greater than those of cross-track component, there was some rooms for improvement in alongtrack component. There was an overall slow bias. The most accurate model was JGSM for 24-hour forecast and ECMWF for 48~96-hour forecast in direct position error, along-track error and cross-track error. ECMWF and GFS had a high variability for 24-hour forecast. The results of predictability by track type showed that most significant errors of tropical cyclone track forecast were caused by the failure to estimate the recurvature phenomenon.

A Numerical Analysis of Flow Characteristics and Oil Separation Performance for Cyclone Oil Separator Designs (사이클론 오일분리 장치 형상변화에 따른 유동 및 오일분리 성능에 관한 해석적 연구)

  • Cho, Yong-Seok;Lee, Seang-Wock;Woo, Keun-Sup;Yoon, Yu-Bin;Park, Young-Joon;Lee, Dug-Young;Kim, Hyun-Chul;Na, Byung-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.22-28
    • /
    • 2008
  • A closed type crankcase ventilation system has been adopted to engines to prevent emission of blow-by gas to atmosphere. In the early closed type crankcase ventilation system, blow-by gas which contains engine lubricating oil is re-circulated into the intake system. The blow-by gas containing oil mist leads to increased harmful emissions and engine problems. To reduce loss of the engine oil, a highly-efficient oil separation device is required. Principle of a cyclone oil separator is to utilize centrifugal force in the separator and, therefore, oil separator designs depend on rotational flow which causes the centrifugal force. In this paper, flow characteristics and oil separation performances for cyclone type designs are calculated with CFD methodology. In the CFD model, oil particle was injected on a inlet surface with Rosin-Rammler distribution and uniform distribution. The major design parameters considered in the analysis model are inlet area, cone length and outlet depth of the oil separator. As results, reducing inlet area and increasing cone length increase oil separation performance. Changes in outlet depth could avoid interference between rotational flow and outlet flow in the cyclone oil separator.

Estimating Productivity of AL-Form Operation Using Web-CYCLONE System (웹싸이클론을 활용한 알루미늄 폼 공정의 품셈산출)

  • Lee, Dong-Eun;Kim, Yong-Woo;Son, Chang-Baek
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.3
    • /
    • pp.115-122
    • /
    • 2013
  • Construction Standard Productivity Manual (CSPM) has been used for estimating the contract amount of public construction projects. CSPM has been annually either revised and/or newly enacted with high costs. Therefore, This study makes use of CYCLONE, which is a simulation modeling and analysis system specialized in construction operation, to improve the revising and enacting processes of CSPM. This paper presents the CSPM revision module that is an Add-in to Web-CYCLONE. The new module can be effectively used to incorporate the auxiliary tasks and the non-productive tasks into AL-Form operation model. The outputs obtained from the models using he CSPM revision module and from work sampling were compared to verify the usability of the add-in modules. This study verifies that the new module can effectively assist enacting and/or revising CSPM.

Study on the Angular Momentum of Axisymmetric Tropical Cyclone in the Developing Stage (발달 단계의 축대칭 열대저기압의 각운동량에 관한 연구)

  • Kang, Hyun-Gyu;Cheong, Hyeong-Bin
    • Atmosphere
    • /
    • v.23 no.1
    • /
    • pp.1-11
    • /
    • 2013
  • The angular momentum transport of an idealized axisymmetric vortex in the developing stage was investigated using the Weather Research and Forecast (WRF) model. The balanced axisymmetric vortex was constructed based on an empirical function for tangential wind, and the temperature, geopotential, and surface pressure were obtained from the balanced equation. The numerical simulation was carried out for 6 days on the f-plane with the Sea Surface Temperature (SST) set as constant. The weak vortex at initial time was intensified with time, and reached the strength of tropical cyclone in a couple of days. The Absolute Angular Momentum (AAM) was transported along with the secondary circulation of the vortex. Total AAM integrated over a cylinder of radius of 2000 km decreased with simulation time, but total kinetic energy increased rapidly. From the budget analysis, it was found that the surface friction is mainly responsible for the decrease of total AAM. Also, contribution of the surface friction to the AAM loss was about 90% while that of horizontal advection was as small as 8%. The trajectory of neutral numerical tracers following the secondary circulation was presented for the Lagrangian viewpoint of the transports of absolute angular momentum. From the analysis using the trajectory of tracers it was found that the air parcel was under the influence of the surface friction continuously until it leaves the boundary layer near the core. Then the air parcel with reduced amount of angular momentum compared to its original amount was transported from boundary layer to upper level of the vortex and contributed to form the anti-cyclone. These results suggest that the tropical cyclone loses angular momentum as it develops, which is due to the dissipation of angular momentum by the surface friction.

Theoretical and Computation Analysis on the Pressure Drop in the Cyclone Dust Collector (사이클론 집진장치 내부의 압력강하에 대한 전산해석과 이론식의 결과 비교)

  • Hyun, Daegeun;Chang, Hyuksang
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.263-268
    • /
    • 2014
  • Using the CFD method, the pressure drop in 6 cyclone dust collectors of different shape were calculated. And the results were compared with results of the conventional theories. Equations of Shepherd and Lapple (1939, 1940), First (1950), Alexander (1949), Stairmand (1949), Barth (1956) were used in the theoretical calculation. In CFD calculations, we used standard k-epsilon model for analysis of turbulent flow, fluid is $25^{\circ}C$ air, the velocity at inlet is 10 m/s and the temperature is $25^{\circ}C$. In CFD analysis results, the pressure distributions along the flow showed similar patterns in different cyclone shapes. But the pressure drop distributions estimated on the conventional theories had big difference in different cyclone shapes. Only First's theory and CFD analysis showed similar results.

Numerical and experimental study on the pressure dorp of axial-flow cyclone in the air handling unit (공기조화기 장착용 축상유입식 싸이클론의 압력손실에 대한 수치해석 및 실험적 연구)

  • Kwon, Soon-Bark;Park, Duck-Shin;Cho, Youngmin;Kim, Se-Young;Kim, Myeoung-Joon;Kim, Hojoong;Kim, Taesung
    • Particle and aerosol research
    • /
    • v.5 no.2
    • /
    • pp.37-43
    • /
    • 2009
  • Particulate matter (PM) is one of the major indoor air pollutants especially in the subway station in Korea. In order to remove PM in the subway station, several kinds of PM removal system such as roll-filter, auto-washable air filter, demister, and electrostatic precipitator are used in the air handling unit (AHU) of subway stations. However, those systems are prone to operation and maintenance problems since the filter-regeneration unit consisting of electrical or water jet parts might malfunction due to the high load of particulates unless the filter medium is periodically replaced. In this study, the use of axial-flow cyclone was proposed for particulate filter unit in the AHU for its low operation and maintenance cost. Novel shape of axial-flow cyclone was designed by using computational fluid dynamics (CFD). The shape of vortex vane was optimized in terms of pressure drop and tangential velocity. In addition, CFD analysis was validated experimentally through the pressure drop measurement of mock-up model. We found that pressure drop and tangential velocity of fluid through the axia-flow cyclone was significantly affected by the rotating degree of vortex vane and the numerical prediction of pressure drop agreed well with experimental measurement.

  • PDF

Crew Productivity and Cost Analysis of Sandwich Panel Construction Work by Applying Web-Cyclone Simulation (Web-Cyclone을 활용한 샌드위치 패널공사 작업조별 생산성 분석 및 공사금액 예측에 대한 연구)

  • Cho, Dong-Ryul;Lee, Seung-Hyun;Son, Jae-Ho
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.262-267
    • /
    • 2008
  • The domestic construction market started to expand steadily since 1970s. The building market which utilizes a sandwich panel with advantages of economical construction expenses and convenient construction has grown rapidly in recent years. However, the companies which specialize in constructing sandwich panels are relatively small or medium size, compared with other construction companies. As a result, studies on the improvement of productivity have not been conducted sufficiently. In this study, the construction sites of sandwich panel are investigated, and the work processes by each team are analyzed. Additionally, the productivity and the construction cost of each construction team are analyzed by constructing a model using the Web-Cyclone. It is expected that the results of this study can be applied to estimate the productivity and the construction cost of a sandwich panel construction that is appropriate for the on-site characteristics of small and medium sized construction companies in Korea. Also, similar processes can be simulated based on the modeling constructed in this study.

  • PDF

Development of Wind Induced Wave Predict Using Revisited Methods

  • Choi, Byoung-Yeol;Jo, Hyo-Jae;Lee, Kang-Ho;Byoun, Dong-Ha
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.124-134
    • /
    • 2018
  • In this study, when the stability of the structure against the ocean wave is considered for designing the offshore structures in the Pacific, Indian ocean and Atlantic regions where the cyclone is largely generated, the ocean wave caused by the cyclone as well as the storm surge which called wind induced wave shall be predicted accurately for the purpose of judgment. The predicted wind induced wave was evaluated by comparing the outcome results the model test of Nobuhiro Matsunaga (1996) and Conventional Experiment forms such as Jonswap spectral forms(Carter, 1982), Simplified Donelan / Jonswap forms(Wilson 1965), Donelan spectral forms(Donelan 1980), Revised SPM forms(Schafer Lake 2005, 2007, 2008), SPM forms(CERC 1977), the CEM forms(Kazeminezhad et al., 2005), SMB forms(Sverdrup Munk and Bretschneider 1947,1954, 1970), and Revised Wilson forms(Wilson 1965, Goda 2003). Most of these conventional experiment forms confirmed a good match when the fetch length is less than 10 km. However, normal cyclone fetch length is more than 100km, With this fetch length, the comparison result is 10.4% of deviation when used Jonswap spectral forms(Carter, 1982) but the deviation of the other forms is around 74% due to boundary limit of fetch and wind duration. Therefore, in this study, we proposed the revised forms after comparing these results with the model results. We confirmed that the deviation range is around 10% based on revisited experiment forms. Since the model test was carried out in the small water tank, the scale up factor was applied to the mode test results in order to obtain similar results to the actual environment from revisited forms.