• 제목/요약/키워드: Cyclin E

검색결과 183건 처리시간 0.033초

S Phase Cell Cycle Arrest and Apoptosis is Induced by Eugenol in G361 Human Melanoma Cells

  • Rachoi, Byul-Bo;Shin, Sang-Hun;Kim, Uk-Kyu;Hong, Jin-Woo;Kim, Gyoo-Cheon
    • International Journal of Oral Biology
    • /
    • 제36권3호
    • /
    • pp.129-134
    • /
    • 2011
  • Eugenol is an essential oil found in cloves and cinnamon that is used widely in perfumes. However, the significant anesthetic and sedative effects of this compound have led to its use also in dental procedures. Recently, it was reported that eugenol induces apoptosis in several cancer cell types but the mechanism underlying this effect has remained unknown. In our current study, we examined whether the cytotoxic effects of eugenol upon human melanoma G361 cells are associated with cell cycle arrest and apoptosis using a range of methods including an XTT assay, Hoechst staining, immunocyto-chemistry, western blotting and flow cytometry. Eugenol treatment was found to decrease the viability of the G361 cells in both a time- and dose-dependent manner. The induction of apoptosis in eugenol-treated G361 cells was confirmed by the appearance of nuclear condensation, the release of both cytochrome c and AIF into the cytosol, the cleavage of PARP and DFF45, and the downregulation of procaspase-3 and -9. With regard to cell cycle arrest, a time-dependent decrease in cyclin A, cyclin D3, cyclin E, cdk2, cdk4, and cdc2 expression was observed in the cells after eugenol treatment. Flow cytometry using a FACScan further demonstrated that eugenol induces a cell cycle arrest at S phase. Our results thus suggest that the inhibition of G361 cell proliferation by eugenol is the result of an apoptotic response and an S phase arrest that is linked to the decreased expression of key cell cycle-related molecules.

Ethanol Elicits Inhibitory Effect on the Growth and Proliferation of Tongue Carcinoma Cells by Inducing Cell Cycle Arrest

  • Le, Thanh-Do;Do, Thi Anh Thu;Yu, Ri-Na;Yoo, Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권3호
    • /
    • pp.153-158
    • /
    • 2012
  • Cellular effects of ethanol in YD-15 tongue carcinoma cells were assessed by MTT assay, caspase activity assay, Western blotting and flow cytometry. Ethanol inhibited the growth and proliferation of YD-15 cells in a dose- and time-dependent manner in an MTT assay. The effects of ethanol on cell cycle control at low percent range of ethanol concentration (0 to 1.5%), the condition not inducing YD-15 cell death, was investigated after exposing cells to alcohol for a certain period of time. Western blotting on the expression of cell cycle inhibitors showed that p21 and p27 was up-regulated as ethanol concentration increases from 0 to 1.5% whilst the cell cycle regulators, cdk1, cdk2, and cdk4 as well as Cyclin A, Cyclin B1 and Cyclin E1, were gradually down-regulated. Flow cytometric analysis of cell cycle distribution revealed that YD-15 cells exposed to 1.5% ethanol for 24 h was mainly arrested at G2/M phase. However, ethanol induced apoptosis in YD-15 cells exposed to 2.5% or higher percent of ethanol. The cleaved PARP, a marker of caspase-3 mediated apoptosis, and the activation of caspase-3 and -7 were detected by caspase activity assay or Western blotting. Our results suggest that ethanol elicits inhibitory effect on the growth and proliferation of YD-15 tongue carcinoma cells by mediating cell cycle arrest at G2/M at low concentration range and ultimately induces apoptosis under the condition of high concentration.

Hep3B 간암세포에서 개똥쑥 추출물에 의한 Cell Cycle Arrest 효과 (Cell Cycle Arrest Effects by Artemisia annua Linné in Hep3B Liver Cancer Cell)

  • 김은지;김근태;김보민;임은경;김상용;하성호;김영민;유제근
    • KSBB Journal
    • /
    • 제30권4호
    • /
    • pp.175-181
    • /
    • 2015
  • Cells proliferate via repeating process that growth and division. This process is G1, S, G2 and M four phases consists. Monitoring the progression of the cell cycle is a specific step that to be a continuous process is repeated to adjust the start of the next step. At this time, this process is called a Checkpoint. Currently, there are three known checkpoints that G1-S phase, G2-M phase, and the M phase. In this study, we confirmed that cell cycle arrest effects by ethanol extracts of Artemisia annua Linne (AAE) in Hep3B liver cancer cells. AAE was regulated proteins which involved in cell cycle such as pAkt, pMDM2, p53, p21, pCDK2 (T14/Y15). AAE induced cell cycle arrest in G1 checkpoint through phosphorylation of CDK2. Akt and p53 upstream is inhibited by AAE and p53 activated by non-activated pMDM2, p53 inhibitor. Thereby, activated p53 is transcript to p21 and activated p21 protein is combined with Cyclin E-pCDK2 complex. Therefore, we confirmed that AAE-induced cell cycle arrest was occurred by p21-Cyclin E-pCDK2 complex by inhibition of pAkt signal. Because of this cell cycle can't pass to S phase from G1 phase.

차가버섯추출물에 의한 흑색종의 세포주기 억제효과 (Cha-ga Mushroom Water Extract induces G0/G1 Arrest in B16-F10 Melanoma cells)

  • 윤명자;송정훈
    • 동의생리병리학회지
    • /
    • 제21권1호
    • /
    • pp.204-208
    • /
    • 2007
  • Chaga mushroom extract is well known as immune modulator and anti-cancer agent. However, the molecular mechanism by which Chaga exerts cell cycle arrest and apoptosis of cancer cells is poorly understood. In this study, we demonstrated anti-proliferative effects of Chaga extract on murine melanoma B16 cells. Chaga extract dose-dependently inhibited cell growth along with the arrest of G0/G1 phase and the induction of apoptotic cell death. Treatment with Chaga extract resulted in a decrease of cyclin E, cyclin D1, cdk 2, cdk 4 expression levels. Furthermore, in vivo inoculation study of B16 melanoma cells into Balb/c mice Chaga extract markedly suppressed the metastatic growth of tumor cells (6 folds, p<0.05,). These results indicate that Chaga mushroom extract induces apoptosis of B16 melanoma cells through arrest of G0/G1 phase in cell cycle.

Suppression of CDK2 expression by siRNA induces cell cycle arrest and cell proliferation inhibition in human cancer cells

  • Long, Xiang-E.;Gong, Zhao-Hui;Pan, Lin;Zhong, Zhi-Wei;Le, Yan-Ping;Liu, Qiong;Guo, Jun-Ming;Zhong, Jiu-Chang
    • BMB Reports
    • /
    • 제43권4호
    • /
    • pp.291-296
    • /
    • 2010
  • Cyclin-dependent kinase 2 (CDK2) is a member of serine/threonine protein kinases, which initiates the principal transitions of the eukaryotic cell cycle and is a promising target for cancer therapy. The present study was designed to inhibit cdk2 gene expression to induce cell cycle arrest and cell proliferation suppression. Here, we constructed a series of RNA interference (RNAi) plasmids which can successfully express small interference RNA (siRNA) in the transfected human cells. The results showed that the RNAi plasmids containing the coding sequences for siRNAs down-regulated the cdk2 gene expression in human cancer cells at the mRNA and the protein levels. Furthermore, we found that the cell cycle was arrested at G0G1 phases and the cell proliferation was inhibited by different siRNAs. These results demonstrate that suppression of CDK2 activity by RNAi may be an effective strategy for gene therapy in human cancers.

The Antiproliferation Activity of Ganoderma formosanum Extracts on Prostate Cancer Cells

  • Chiang, Cheng-Yen;Hsu, Kai-Di;Lin, Yen-Yi;Hsieh, Chang-Wei;Liu, Jui-Ming;Lu, Tze-Ying;Cheng, Kuan-Chen
    • Mycobiology
    • /
    • 제48권3호
    • /
    • pp.219-227
    • /
    • 2020
  • Androgen-independent prostate cancer accounts for mortality in the world. In this study, various extracts of a medical fungus dubbed Ganoderma formosanum were screened for inhibition of DU145 cells, an androgen-independent prostate cancer cell line. Results demonstrated that both hexane (GF-EH) and butanol (GF-EB) fraction of G. formosanum ethanol extract inhibited DU145 cell viability in a dose-dependent manner. GF-EH induced cell-cycle arrest in G1 phase of DU145 cells via downregulation of cyclin E2 protein expression. In addition, GF-EB triggered extrinsic apoptosis of DU145 cells by activating caspase 3 gene expression resulting in programed cell death. Above all, both GF-EH and GF-EB show lower toxicity to normal human fibroblast cell line compared to DU145 cell, implying that they possess specific drug action on cancer cells. This study provides a molecular basis of G. formosanum extract as a potential ingredient for treatment of androgen-independent prostate cancer.

Jurkat T 임파구의 세포주기 기전에 미치는 저근백피(Ailanthus altissima)의 효과 (Effect of Ailanthus altissima Water Extract on Cell Cycle Control Genes in Jurkat T Lymphocytes)

  • 전병훈;황상구;이형철;김춘관;김대근;이기옥;윤용갑
    • 약학회지
    • /
    • 제46권1호
    • /
    • pp.18-23
    • /
    • 2002
  • Ailanthus altissima has been used to settle an upset stomach, to alleviate a fever and as an insecticide. We reported that the water extract of A. altissima induced apoptotic cell death in Jurkat T-acute Iymphoblastic leukemia cells. Here, we showed the dose-dependent inhibitions of cell viability by the extract, as measured by cell morphology. The cell cycle control genes are considered to play important roles in tumorigenesis. The purpose of the present study is also to investigate the effect of A. altissima on cell cycle progression and its molecular mechanism in the cells. The level of p21 protein was increased after treatment of the extract, whereas both Bcl-2 and Bax protein levels were not changed. These results suggest that A. altissima induces apoptotic cell death via p21-dependent signaling pathway in Jurkat cells which delete wild type p53. Gl checkpoint related gene products tested (cyclin D3, cyclin dependent kinase 4, retinoblastoma, E2Fl) were decreased in their protein levels in a dose-dependent manner after treatment of the extract Taken together, these results indicate that the increase of apoptotic cell death by A. altissima may be due to the inhibition of cell cycle in Jurkat cells.

Cellular Prion Protein Enhances Drug Resistance of Colorectal Cancer Cells via Regulation of a Survival Signal Pathway

  • Lee, Jun Hee;Yun, Chul Won;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • 제26권3호
    • /
    • pp.313-321
    • /
    • 2018
  • Anti-cancer drug resistance is a major problem in colorectal cancer (CRC) research. Although several studies have revealed the mechanism of cancer drug resistance, molecular targets for chemotherapeutic combinations remain elusive. To address this issue, we focused on the expression of cellular prion protein ($PrP^C$) in 5-FU-resistant CRC cells. In 5-FU-resistant CRC cells, $PrP^C$ expression is significantly increased, compared with that in normal CRC cells. In the presence of 5-FU, $PrP^C$ increased CRC cell survival and proliferation by maintaining the activation of the PI3K-Akt signaling pathway and the expression of cell cycle-associated proteins, including cyclin E, CDK2, cyclin D1, and CDK4. In addition, $PrP^C$ inhibited the activation of the stress-associated proteins p38, JNK, and p53. Moreover, after treatment of 5-FU-resistant CRC cells with 5-FU, silencing of $PrP^C$ triggered apoptosis via the activation of caspase-3. These results indicate that $PrP^C$ plays a key role in CRC drug resistance. The novel strategy of combining chemotherapy with $PrP^C$ targeting may yield efficacious treatments of colorectal cancer.

Losartan Inhibits Vascular Smooth Muscle Cell Proliferation through Activation of AMP-Activated Protein Kinase

  • Kim, Jung-Eun;Choi, Hyoung-Chul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권5호
    • /
    • pp.299-304
    • /
    • 2010
  • Losartan is a selective angiotensin II (Ang II) type 1 ($AT_1$) receptor antagonist which inhibits vascular smooth muscle cells (VSMCs) contraction and proliferation. We hypothesized that losartan may prevent cell proliferation by activating AMP-activated protein kinase (AMPK) in VSMCs. VSMCs were treated with various concentrations of losartan. AMPK activation was measured by Western blot analysis and cell proliferation was measured by MTT assay and flowcytometry. Losartan dose- and time-dependently increased the phosphorylation of AMPK and its downstream target, acetyl-CoA carboxylase (ACC) in VSMCs. Losartan also significantly decreased the Ang II- or 15% FBS-induced VSMC proliferation by inhibiting the expression of cell cycle associated proteins, such as p-Rb, cyclin D, and cyclin E. Compound C, a specific inhibitor of AMPK, or AMPK siRNA blocked the losartan-induced inhibition of cell proliferation and the $G_0/G_1$ cell cycle arrest. These data suggest that losartan-induced AMPK activation might attenuate Ang II-induced VSMC proliferation through the inhibition of cell cycle progression.